
AN INTRODUCTION TO ALGEBRAIC NUMBERS AND
ALGEBRAIC INTEGERS

MATIAS RELYEA

Abstract. In this brief introduction to algebraic numbers and algebraic inte-
gers, we will explore some properties of finite-dimensional vector spaces, and
through the language of algebraic numbers and algebraic integers, state and
prove several fundamental results in field theory and ring theory; namely that
the set of algebraic numbers forms a field and that the set of algebraic integers
forms a ring. These structures are related to and stem from their respective
algebraic number fields, known as Q modules and Z modules respectively.
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Introduction

Algebraic numbers and algebraic integers form a significant part of the study of
Algebraic Number Theory, beginning with algebraic number fields (of which we
mention very briefly in this paper), continuing with algebraic properties in par-
ticular domains and structures, the extent to which properties of unique or non-
unique factorization are satisfied, and so on. What we cover in this paper is only
a brief and elementary introduction to algebraic numbers and algebraic integers,
as well as some algebraic background for the formulation and structure of certain
mathematical objects.
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We will first introduce vector spaces, which form the foundation of linear alge-
bra. Then we will proceed by defining the algebraic number fields in study: namely
Q modules and Z modules. These will guide us through our study of fields of alge-
braic numbers and rings of algebraic integers. We will then prove their respective
properties, and prove another significant result surrounding the nature of Q[x] and
Q(x), which are the ring of polynomials with rational coefficients and the set of
rational polynomials respectively.

To gain a better understanding of how these results are related to number theory,
and how they follow into more advanced topics of algebraic number theory, [IRR90]
is a fantastic source for a rigorous introduction and broad coverage. To study
linear algebra, [Axl15] is a great place to start, as it begins with an informative
and detailed introduction to vector spaces and algebraic structures. There are also
numerous other sources that contain irrefutably interesting and integral material,
but I will not list them here as they lie beyond the scope of this paper.

1. Preliminaries

1.1. Vector Spaces. We will begin by defining vector spaces.

Definition 1.1 (Vector Space). We define a vector space to be a set V with an
addition and scalar multiplication on V that satisfies the following:

(1) u+ v = v + u for all u, v ∈ V (commutativity),
(2) (u + v) + w = u + (v + w) and (αβ)z = α(βv) for all u, v, w ∈ V and

α, β ∈ C (associativity),
(3) α(u+ v) = αu+ αv and (α+ β)v = αv + βv for all u, v ∈ V and α, β ∈ C

(distributivity),
(4) the existence of an additive identity 0 ∈ V such that v+0 = v for all v ∈ V ,
(5) the existence of an additive inverse such that for every v ∈ V there exists

some w ∈ V where v + w = 0,
(6) the existence of a multiplicative identity 1 ∈ V such that 1v = v for all

v ∈ V .

Note that the scalars α, β ∈ C defined above can in fact be elements of any field;
in this paper, we will use the complex number field C for the sake of simplicity in
the construction of algebraic numbers and algebraic integers, but it very well may
be extended to R or something similar. The following properties are not difficult
to prove.

Lemma 1.2. A vector space has a unique additive identity and inverse.

Lemma 1.3. 0v = v for every v ∈ V .

Lemma 1.4. α0 = 0 for every α ∈ C.

Lemma 1.5. (−1)v = −v for every v ∈ V .

We will now define a subspace.
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Definition 1.6 (Subspace). A subset U ⊂ V is defined as a subspace if U is also
a vector space.

It is not difficult to show that a subset of V is a subspace. In order to do so, we
need only check that it possesses an additive identity, and is closed under addition
and multiplication.

Definition 1.7 (Linear Combination). For some list of vectors (v1, v2, . . . , vn) ∈ V ,
its linear combination is a vector of the form

α1v1 + α2v2 + · · ·+ αnvn

where α1, α2, . . . , αn ∈ C.

Definition 1.8 (Span). We define the span of a list of vectors (v1, v2, . . . , vn) ∈ V
to be the set of all linear combinations. We write this as

span(v1, v2, . . . , vn) = {α1v1 + α2v2 + · · ·+ αnvn | α1, α2, . . . , αn ∈ C}.

Definition 1.9 (Finite-Dimensional Vector Space). We say that a vector space
V is finite-dimensional if there exists some finite list of vectors in V such that its
span is equivalent to the vector space. This list of vectors is known as a spanning
list of V .

We say that a vector space that does not contain a finite list of vectors that spans
the vector space is an infinite-dimensional vector space. We will not explore
this concept in this paper, but it can be proven that if the dimension of the vector
space is indeterminable, then the vector space is infinite-dimensional.

Definition 1.10 (Linear Independence). A list of vectors (v1, v2, . . . , vn) ∈ V is
linearly independent if the only way for its linear combination to be 0 is for all
scalars multiples to be 0. In other words,

α1v1 + α2v2 + · · ·+ αnvn = 0

is possible if and only if α1 = α2 = · · · = αn = 0.

Definition 1.11 (Basis). We define the basis of a finite-dimensional vector space
V to be a list of vectors that both spans V and is linearly independent in V .

These will be useful later.

1.2. Algebraic Numbers and Algebraic Integers. We now introduce the alge-
braic numbers and algebraic integers. They are the focus of this paper, but what
concerns us the most, on an elementary scale, is their algebraic structures, and
how they can be used to prove certain properties across other algebraic structure.
At the end of this subsection we will prove an important property regarding the
algebraic integers that allows us to solve polynomial equations.
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Definition 1.12 (Algebraic Number). An algebraic number is a complex number
that is the root of some polynomial

a0x
n + a1x

n−1 + a2x
n−2 + · · ·+ an,

where a0, a1, a2, . . . , an ∈ Q. We will denote the set of all algebraic numbers as Q̄.

We may say, for instance, that
√
2/2 is an algebraic number, as it is a root of

another polynomial.

Definition 1.13 (Algebraic Integer). Naturally, an algebraic integer is thus the
root of some monic polynomial

xn + b1x
n−1 + b2x

n−2 + · · ·+ bn−1x+ bn,

where b1, b2, . . . , bn ∈ Z. We will denote the set of all algebraic integers as Z̄.
We may say, for instance, that

√
2 is an algebraic integer, as it is a root of the

monic irreducible polynomial x2 − 2.
Numbers that are neither algebraic numbers nor algebraic integers are known as

transcendental numbers. For example, e and π are both transcendental, as they
are not roots of polynomial equations with either rational or integer coefficients.

Theorem 1.14. A rational number r ∈ Q is an algebraic integer if and only if it
is a rational integer.

Proof. To prove the backward direction, consider some r ∈ Z. Then r is clearly a
root of the monic polynomial x− r = 0, so r is an algebraic integer.

To prove the forward direction, suppose that r ∈ Q, and that it is an algebraic
integer. Then, by the definition of an algebraic integer, it satisfies the monic
polynomial equation

(1) xn + b1x
n−1 + b2x

n−2 + · · ·+ bn−1x+ bn = 0,

where b1, b2, . . . , bn ∈ Z. We let r = c/d for c, d ∈ Z and gcd(c, d) = 1. Allowing r
to be a root of (1), we substitute it for x to obtain(

c

d

)n

+ b1

(
c

d

)n−1

+ b2

(
c

d

)n−2

+ · · ·+ bn−1

(
c

d

)
+ bn = 0

dn(cn + b1c
n−1d+ b2c

n−2d2 + · · ·+ bnd
n−1) = 0

cn + b1c
n−1d+ b2c

n−2d2 + · · ·+ bnd
n−1 = 0.

If we subtract cn from both sides, and factor out a d from the resulting left-hand-
side, we can easily see that d | cn. However, since we were originally given the
condition that gcd(c, d) = 1, the only possibility for both to be valid is if d = ±1.
Since d = ±1, r thus must be a rational integer. It is the root of (1), so it is also
an algebraic integer, and we are done. ■

This theorem may also be known as the Rational Root Theorem, and it has applica-
tions in the solving of single-variable polynomial equations. The method described
in the proof can be used to calculate the roots of any polynomial equation.
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1.3. Q modules and Z modules. Although the Q module and Z module are
examples of algebraic number fields, they are not the only examples of such.

Definition 1.15 (Q module). We define some subset V ⊂ C of the complex
number field to be a Q module if its satisfies three conditions:

(1) For any γ1, γ2 ∈ V , is is true that γ1 + γ2 ∈ V and γ1 − γ2 ∈ V . In other
words, V is closed under +.

(2) For some γ ∈ V and r ∈ Q, it is true that rγ ∈ V . In other words, V has
a scalar multiplication over Q.

(3) There exist γ1, γ2, . . . , γn ∈ V such that every γ ∈ V may be written as a
linear combination of each γ1, γ2, . . . , γn, or

γ =
n∑

i=1

riγi where ri ∈ Q.

The first property asserts closure, the second illustrates a scalar multiplication,
and the third asserts that there exists a finite list of vectors in V such that their
span equates to V . Thus it is not difficult to see that V forms a finite-dimensional
vector space over Q.

Definition 1.16 (Z module). We define some subset W ⊂ C of the complex
number field to be a Z module if it satisfies two conditions:

(1) For any ω1, ω2 ∈ W , it is true that ω1 ± ω2 ∈ W .
(2) There exist ω1, ω2, . . . , ωm ∈ W such that every ω ∈ W may be written in

the form

ω =
m∑
i=1

qiωi where qi ∈ Z.

Notice that unlike the Q module, Z does not form a finite-dimensional vector space
over Z as it does not have a scalar multiplication. Also, a Z module does not need
to contain a basis as it is not possible to produce a linearly independent list of
vectors. However, we can see that it forms a finitely-generated abelian group.

Definition 1.17 (Finitely-Generated Group). We say that a group G is finitely-
generated if there exists a finite set W ⊂ G such that every element of G may
be written as a linear combination of the finite set W .

Furthermore, a Z module is abelian because by definition, it is a subset of the
complex field C, which itself maintains commutativity and closure under + and ×.

In general, modules are a generalization of a vector space, where the field of
scalars seen in a vector space is confined by a ring rather than a field.

2. Sets of Algebraic Numbers and Algebraic Integers

Now that we are equipped with the necessary devices with which to communicate
the following results, we can begin.
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2.1. The algebraic numbers form a field. We will first prove a lemma that
will assist in the proof of our theorem.

Lemma 2.1. Suppose that V ⊂ C is a Q module. We will denote this Q module
as [γ1, γ2, . . . , γn], where γ1, γ2, . . . , γn ∈ V forms a basis of V . Next, suppose that
α ∈ C. If

αV ⊂ V,

then α is an algebraic number, or α ∈ Q̄.

Proof. Let us take the basis (γ1, γ2, . . . , γn). Suppose that

αγi =
n∑

j=1

aijγj where aij ∈ Q.

We can rewrite this as a system of equations of square matrix elements as follows:

αγ1 = a11γ1 + a12γ2 + · · ·+ a1nγn

αγ1 = a21γ1 + a22γ2 + · · ·+ a2nγn

αγ1 = a31γ1 + a32γ2 + · · ·+ a3nγn

...

αγ1 = an1γ1 + an2γ2 + · · ·+ annγn.

We may rewrite this as a determinant

det (αI − A) = 0

where

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

...
an1 an2 an3 · · · ann


and

I =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

 .

Since the determinant is the characteristic polynomial of A, it is an nth degree
polynomial equation. Thus it is clear that α is an algebraic number, and we are
done. ■

With this proven, we can assert that scalar multiples of α ∈ C and any element of
V remains within V , and this will be incredibly useful for the final proof.
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Theorem 2.2. Q̄ is a field.

Proof. Before we may proceed, let us recall the conditions of a field: there is closure
under + and ×, and the existence of an additive inverse and multiplicative inverse
(the uniqueness of inverses is trivial). Thus we must prove that for algebraic
numbers α1, α2 ∈ Q̄, it is true that

(1) for every α1 ∈ Q̄ there exists α2 ∈ Q̄ such that α1 + α2 = 0, which is also
the additive identity in the field,

(2) for every α1 ∈ Q̄ there exists α2 ∈ Q̄ such that α1α2 = 1, which is also the
multiplicative identity in the field,

(3) α1 ± α2 ∈ Q̄,
(4) α1α2 ∈ Q̄.

The statements of (1) and (2) are relatively easy to see. To prove (1), let α satisfy
f(x) = 0. Then it is true that −α satisfies f(−x) = 0, so we have an additive
inverse. To prove (2), suppose that we have the polynomial

a0α
n + a1α

n−1 + a2α
n−2 + · · ·+ an = 0,

where ai ∈ Q. Multiply the left-hand-side and right-hand-side of this polynomial
by α−n to obtain

(α−n)a0α
n + a1α

n−1 + a2α
n−2 + · · ·+ an−1α

n−(n−1) + an = 0(α−n)

anα
−n + an−1α

−n+((n−(n−1)) + an−2α
−n+((n−(n−2)) + · · ·+ a0 = 0

anα
−n + an−1α

−(n−1) + an−2α
−(n−2) + · · ·+ a0 = 0

an

(
1

α

)n

+ an−1

(
1

α

)n−1

+ an−2

(
1

α

)n−2

+ · · ·+ a0

(
1

α

)0

= 0.

Since 1/α is a root of this polynomial, it is thus an algebraic number.
To prove (3) and (4), consider two polynomial equations

αn
1 + r1α

n−1
1 + r2α

n−2
1 + rn = 0

and
αn
2 + s1α

n−1
2 + s2α

n−2
2 + sm = 0,

where ri, si ∈ Q. We allow V to be the Q module formed by considering all mn
linear combinations of the elements αi

1α
j
2, where 0 ≤ i ≤ n and 0 ≤ j ≤ m,

which span V . Since α1 and α2 are defined by the two polynomials to be algebraic
numbers, it must be true that, for some γ ∈ V ,

α1γ ⊂ V and α2γ ⊂ V,

by Lemma 2.1. In the context of Lemma 2.1, this is equivalent to stating that
α1V ⊂ V and α2V ⊂ V . Thus we may write

(α1 + α2)V ⊂ V and (α1α2)V ⊂ V,

thus proving that α1 + α2, α1α2 ∈ Z̄, hence proving that Z̄ is a ring. Thus we are
done. ■
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2.2. The algebraic integers form a ring. Much like the proof that Q̄ forms a
field, the proof that Z̄ forms a ring involves proving a complementary lemma, and
then proving the final result. We will omit the absolute details, but it is important
to recall that a Z module forms a finitely-generated abelian group.

However, in order to further understand the relationship between the field of
algebraic numbers and ring of algebraic integers, we must further understand how
certain structures operate. Previously, when proving Theorem 2.2, we showed that
the set of algebraic numbers is a field if it has an additive and multiplicative inverse,
which were denoted as 0 and 1 respectively. However, in the context of rings, it is
not necessary to have those two types of inverses for each element. Furthermore,
it is not necessary for a ring to be commutative. However, a commutative ring is
a field if and only if every nonzero element in the ring has a multiplicative inverse,
and we call this ring a monoid. We will not use monoids in our final proof, but it
is important to notice that although fields and rings are definitively different, they
still exist under two binary operations, and are equivalent in special cases. We
may interpret a ring with two binary operations as a group under addition that
satisfies some multiplicative axioms, and a field as a group under both addition
and multiplication. As an example of the variability of a ring, we say that a ring
that does not possess an identity element is an “rng”.

The proof of Theorem 2.2 and Theorem 2.4 are vastly similar, as we focus on
proving closure under + and ×.

Furthermore, note that if we are able to prove this theorem, then it is evident
that

Z ⊂ Z̄ ⊂ Q̄.

Now we can prove the aforementioned complementary lemma.

Lemma 2.3. Suppose that some W ⊂ C is a Z module. We allow the finite set
{ω1, ω2, . . . , ωn} to generate the group W , where ω1, ω2, . . . , ωn ∈ W . Next, suppose
that β ∈ C. If

βW ⊂ W,

then β is an algebraic integer, or β ∈ Z̄.

Proof. Let {ω1, ω2, . . . , ωn} generate W . Suppose that

βωi =
n∑

j=1

aijωj where aij ∈ Z.
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Similarly, we write this as a system of equations of square matrix elements:

βω1 = a11ω1 + a12ω2 + · · ·+ a1nωn

βω1 = a21ω1 + a22ω2 + · · ·+ a2nωn

βω1 = a31ω1 + a32ω2 + · · ·+ a3nωn

...

βω1 = an1ω1 + an2ω2 + · · ·+ annωn.

Again, we write this as a determinant

det (βI −B)

where

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

...
an1 an2 an3 · · · ann


and

I =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

 .

The characteristic polynomial of B produces an nth degree monic polynomial
equation, so β is an algebraic integer, and we are done. ■

Theorem 2.4. Z̄ is a ring.

Proof. The proof is analogous to the proof that the set of algebraic numbers forms
a field. We need only prove that β1 + β2 and β1β2 are in Z̄ for β1, β2 ∈ Z̄.

To do so, consider two monic polynomial equations

βn
1 + t1β

n−1
1 + t2β

n−2
1 + · · ·+ tn = 0

and

βn
2 + u1β

n−1
2 + u2β

n−2
2 + · · ·+ un = 0,

where ti, ui ∈ Z. We let W be the Z module formed by considering all kl linear
combinations of the finite set of elements βi

1β
j
2, where 0 ≤ i ≤ k and 0 ≤ j ≤ l,

which finitely generate W . Since the two polynomials above provide the conditions
for β1 and β2 to be algebraic, it is true that, for some ω ∈ W ,

β1ω ⊂ W and β2ω ⊂ W,
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by Lemma 2.3. In the context of Lemma 2.3, this is equivalent to stating that
β1W ⊂ W and β2W ⊂ W . Thus we may write

(β1 + β2)W ⊂ W and (β1β2)W ⊂ W,

thus proving that β1+β2, β1β2 ∈ Q̄ by Lemma 2.3, hence proving that Z̄ is a ring.
Thus we are done. ■

3. Additional Results

We will conclude this paper with several interesting properties of algebraic num-
bers. So as to not confuse sets of algebraic numbers and algebraic integers with
their field and ring counterparts, we will denote the field of algebraic numbers as
Γ and the ring of algebraic integers as Ω.

However, before we proceed, we must reconsider two properties of a ring k[x],
elements of which are polynomials with coefficients from some field F . As in
the ring of Z, there is an analog for k[x]; namely the gcd and linear combination.
However, in order to convey our results, we must use ring-theoretic language. Thus,
for some f1, f2, . . . , fn ∈ k[x], we denote (f1, f2, . . . , fn) to be the ideal generated
by f1, f2, . . . , fn, written as

f1h1 + f2h2 + · · ·+ fnhn,

where h1, h2, . . . , hn ∈ k[x]. We may now proceed.

Lemma 3.1. Let two polynomials f(x), g(x) ∈ k[x]. Then there exists some poly-
nomial d(x) ∈ k[x] such that (f(x), g(x)) = (d(x)). In other words, there exist
two polynomials f(x), g(x) ∈ k[x] such that the ideal generated by f(x) and g(x)
is equivalent to the ideal generated by another polynomial d(x) ∈ k[x].

Proof. In the set (f(x), g(x)), let d(x) be the element of least degree. Clearly, we
have that (d(x)) ⊆ (f(x), g(x)). Thus, in order to prove the equivalence of these
two ideals, we must show the reverse inclusion.

To do this, consider some c(x) ∈ (f(x), g(x)). If we assume d(x) ∤ c(x), then
by the division algorithm in k[x], there exist polynomials q(x), r(x) such that
c(x) = q(x)d(x) + r(x), where deg r(x) < deg d(x). Since c(x), d(x) ∈ (f(x), g(x)),
we may rewrite

r(x) = c(x)− q(x)d(x).

Now it is clear that r(x) ⊆ (f(x), g(x)). However, we originally assumed d(x)
to be the polynomial of least degree in the ideal (f(x), g(x)), yet the fact that
r(x) is in the same ideal and is of lesser degree suggests otherwise. Thus we
have reached a contradiction, and d(x) | c(x), so that c ∈ (d(x)), proving that
(f(x), g(x)) ⊆ (d(x)). Thus we are done. ■

We say that this polynomial d(x) of least degree is the greatest common divisor
of f(x) and g(x) if d(x) divides both f(x) and g(x) and every common divisor of
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f(x) and g(x) divides d(x). Again, referring to the analogue, if d(x) = 1, then
f(x) and g(x) are relatively prime. We prove the following lemma.

Lemma 3.2. Let f(x), g(x) ∈ k[x]. Then there is a d(x) ∈ k[x] such that
(f(x), g(x)) = (d(x)), where d(x) is a greatest common divisor of f(x) and g(x).

Proof. By Lemma 3, it is clearly true that f(x), g(x) ∈ (d(x)), so d(x) | f(x) and
d(x) | g(x). Let there exist some h(x) ∈ k[x]. Suppose that h(x) | f(x) and
h(x) | g(x). Then h(x) divides every polynomial of the form f(x)l(x) + g(x)m(x)
for l(x),m(x) ∈ k[x]. This implies that h(x) | d(x), so d(x) is clearly the greatest
common divisor of f(x) and g(x), so we are done. ■

Now that we are equipped with these preliminary results, we may proceed.
Consider some α ∈ Γ. Let Q[x] denote the ring of polynomials with rational

coefficients. If we consider some nonzero polynomial f(x) ∈ Q[x] of smallest degree
for which α is a root, then f(x) must be irreducible. We will now prove a lemma
that will further extend this and prove another property regarding divisibility of
polynomials in Q[x].

Lemma 3.3. If α ∈ Γ, then α is the root of a unique monic irreducible polynomial
f(x) ∈ Q[x]. Furthermore, if there exists some other g(x) ∈ Q[x] with α as a root,
then f(x) | g(x).
Proof. If α is a root of f(x), then we can allow f(x) to be any monic irreducible
with the property that f(α) = 0. We must prove uniqueness. However, we will
first prove the second statement. We let g(x) be a polynomial with the property
that g(α) = 0.
Assume that f(x) ∤ g(x). Then (f(x), g(x)) = 1 by the statement following

Lemma 3. By the proof of Lemma 3.2, we may write this as a linear combination
of f(x) and g(x):

f(x)h(x) + g(x)t(x) = 1

for h(x), t(x) ∈ Q[x]. If α is a root, then

f(α)h(α) + g(α)t(α) = 1

0(h(α)) + 0(t(α)) = 1

0 + 0 = 0 ̸= 1,

which is a contradiction. Thus it must be true that f(x) | g(x). Thus it is clear
that f(x) is unique. ■

We define this unique monic irreducible polynomial mentioned above to be the
minimal polynomial of α. If we allow this particular polynomial to be f(x) and
set deg f(x) = n, then we say that α is the algebraic number of degree n. If
f(x) is irreducible and deg f(x) = n, then f(x) is the minimal polynomial for each
of its n roots by the Fundamental Theorem of Algebra.

We these results now equipped, we are prepared to prove the final result. If
Q[α] is the ring of polynomials over the field Q i.e. with rational coefficients, then
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we define Q(α) to be the field of complex numbers of the form g(α)/h(α), where
g(x), h(x) ∈ Q[x] are polynomials. The theorem we are about to prove is that if α
is an algebraic integer, then Q[α] = Q(α).

Theorem 3.4. If α ∈ Ω, then Q[α] = Q(α).

Proof. Before we begin, notice that Q[α] ⊂ Q(α). This is because the the integer 1
is a function, and we may write it as h(x) = 1, which is a polynomial of deg h(x) =
0. Thus every element in Q[α] exists in Q(α).

Recall that h(α) ∈ Q[α]. Assume that h(α) ̸= 0 (which guarantees that no
polynomial in Q(α) is indeterminate). By the negation of Lemma 3.3, there exists
some monic irreducible minimal polynomial f(x) ∈ Q[x] such that f(x) ∤ h(x). It
is true that f(x) is the minimal polynomial of α, as it is the polynomial of least
degree in Q[x] such that f(α) = 0 for α ∈ Ω.
Thus it is true that f(x) and g(x) are analogously relatively prime, so by the

proof of Lemma 3.2, we may write

f(x)s(x) + h(x)t(x) = 1

for s(x), t(x) ∈ Q[x]. Let x = α ∈ Ω. Then since f(α) = 0 but h(α) ̸= 0, we have

f(α)s(α) + h(α)t(α) = 1

0(s(α)) + h(α)t(α) = 1

h(α)t(α) = 1.

Thus we know that t(α) = 1/h(α). Since we can assert that t(α) ∈ Q[α], it is thus
true that 1/h(α) ∈ Q[α]. Let γ ∈ Q(α). Then we may express it as a complex
number

γ =
g(α)

h(α)
= g(α)h(α)−1

for g(x), h(x) ∈ Q[x]. Thus, by the above statement, it is clear that γ ∈ Q[α]. We
may thus assert that Q(α) ⊂ Q[α]. By double inclusion, it follows that Q[α] =
Q(α), and we are done. ■
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