
A BRIEF INTRODUCTION TO BÉZIER CURVES
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Abstract. In this paper we will define the Bézier curve and introduce sev-
eral interesting properties. We will also introduce the Bernstein polynomial and
Bernstein basis polynomials, and state how they relate to De Casteljau’s algo-
rithm and rational Bézier curves. We will conclude with a short derivation of the
derivative of the Bézier curve, alongside an outline for a method of calculating
the derivative of a Bézier curve at a given point.
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Introduction

Bézier curves are discrete parametric curves that can be modeled and modified by
points known as control points. From a theory-based perspective, Bézier curves
are a special case of a category of curves known as B-spline curves, and can be
composed with one another to form a complete B-spline curve. We will not discuss
B-splines as they lie beyond the scope of this paper.

At first, Bézier curves were created to approximate smooth curves in real-world
scenarios, and were incredibly useful in that regard, as they could easily be con-
trolled using the aforementioned control points, and were easy to manipulate by
a user. The namesake of the Bézier curve was a French engineer by the name of
Pierre Bézier, who used it in the 1960s to innovate and model curvature on cars
manufactured by Renault, a French car manufacturer. While Bézier curves are
named after Bézier, there were numerous other contributors to its early develop-
ment, especially with the French Paul de Casteljau, who developed an algorithm
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for computing Bézier curves, and the Ukrainian-Russian Sergei Natanovich Bern-
stein, who created the Berstein polynomial and Berstein basis polynomials, which
can be used to represent Bézier curves.

Bézier curves have numerous applications in computer-aided design, animation,
vector graphics, and many more.

For more information on cubic Bézier curves, [KA00] is a good place to begin,
as it provides more insight on the calculation of Bézier curves using matrices. For
more information on the different types of Bézier curves and uses in approximating
segments of conic sections, [Rei11] is a good place to look. For far more insight
on different components of Bézier curves, as well as more information on B-spline
curves and other forms of continous smooth curves, [CK98] is a good start.

1. Creating the Bézier curve

To begin, let us consider 4 points. We will call points such as these control points
throughout the remainder of this paper. Define these 4 points as P0,0, P1,0, P2,0,
and P3,0. The second subscript indicates a characteristic known as the level of
the curve, and the first subscript numbers the control point. Connect the control
points to form a nearly complete trapezoid. The figure below will form the 0th
level of our Bézier curve.

P1,0

P0,0 P3,0

P2,0

From this, we are able to define a technique known as linear interpolation. Define
a parameter t. Let there be some point P0,1 on the line segment P0,0P1,0. Let
t ∈ [0, 1]. We may consider these control points to be vectors, and thus write an
equation representing P0,1 in terms of t.

P0,1 = tP0,0 + (1− t)P1,0

Notice that if we allow t = 0, then P0,1 = P1,0, and if we allow t = 1, then
P0,1 = P0,0. Thus, by varying the value of t, we are changing the division of the
segment P0,0P0,1. This process of parametrizing points on segments formed by
these segments is known as linear interpolation. We can repeat this process for
all other segments to obtain a list of equations that describe movement of points
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along the segments above.

P0,1 = tP0,0 + (1− t)P1,0

P1,1 = tP1,0 + (1− t)P2,0

P2,1 = tP2,0 + (1− t)P3,0

If we plot these points on the graph, we can observe the formation of a structure.

P1,0

P0,0 P3,0

P2,0

P0,1

P1,1

P2,1

Finally, to complete the graph, define two more points P0,2 and P1,2 that lie on the
segments P0,1P1,1 and P1,1P2,1 respectively, and add another point P0,3 that moves
along the segment P0,2P1,2. Using the same parameter t, we have

P0,2 = tP0,1 + (1− t)P1,1

P1,2 = tP1,1 + (1− t)P2,1

P0,3 = tP0,2 + (1− t)P1,2,

and when graphed, it looks like this:

P1,0

P0,0 P3,0

P2,0

P0,1

P1,1

P2,1

P0,2 P1,2P0,3

What we have constructed above is a collection of control points that define a
Bézier curve, where t ∈ [0, 1], and it is defined by

P0,1 = tP0,0 + (1− t)P1,0

P1,1 = tP1,0 + (1− t)P2,0

P2,1 = tP2,0 + (1− t)P3,0

P0,2 = tP0,1 + (1− t)P1,1

P1,2 = tP1,1 + (1− t)P2,1

P0,3 = tP0,2 + (1− t)P1,2.
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Now that we have explicitly parametrized the curve, let us attempt to find an
expression that will give us the Bézier curve in terms of t and all points. Noticing
that P0,3 can be rewritten with other expressions, write

P0,3 = t(tP0,1 + (1− t)P1,1) + (1− t)(tP1,1 + (1− t)P1,2)

= t(t(tP0,0 + (1− t)P1,0) + (1− t)(tP1,0 + (1− t)P2,0))

+ (1− t)(t(tP1,0 + (1− t)P2,0)),

and so on. As one may ascertain form the sheer scale of this expression, it becomes
obvious that it would be pointless to do this manually, and a significant waste of
time. Thus, it remains an exercise for the reader to prove that this yields

(1) P0,3 = (1− t)3P0,0 + 3t(1− t)2P1,0 + 3t2(1− t)P2,0 + t3P3,0.

This curve is known as a cubic Bézier curve. Since the path of the point P0,3 is
easily determined by a smooth curve, we will denote P0,3 as a function parametrized
by t. We will denote the path formed by the function as B3(t), or more generally,
Bn(t). We refer to such polynomials as Bernstein polynomials. A characteristic
of the Bézier curve is that it is infinitely differentiable and continous everywhere.

2. Higher-order Bézier curves

2.1. Bernstein polynomials. Of course, cubic Bézier curves are not the only
Bézier curves that we can construct. What we constructed in section 1 was a
Bézier curve of degree n = 3. However, we can also construct Bézier curves of
degree n = 1, n = 2, n = 5000, and so on.

Remark 2.1. A Bézier curve of degree n must have n+ 1 control points.

Naturally, a curve with n = 1 is simple linear interpolation along a straight line
between two control points, and a curve with n = 2 is a quadratic Bézier curve
with 3 levels of complication. If we observe the polynomial in (1), its coefficients
seem oddly similar to binomial coefficients. This is no coincidence.

Definition 2.2 (Bernstein basis polynomial). We define a Bernstein Basis Poly-
nomial to be

bi,n(t) =

(
n

i

)
(1− t)n−iti,

where i denotes the control point number from 0 to n.
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Definition 2.3 (Bernstein polynomial of degree n). We define the Bernstein poly-
nomial of degree n to be a linear combination of Berstein basis polynomials, or

Bi,n(t) =
n∑

i=0

(
n

i

)
(1− t)n−itiPi,0

=

(
n

0

)
(1− t)nt0P0,0 +

(
n

1

)
(1− t)n−1t1P1,0 + · · ·

+

(
n

n− 1

)
(1− t)1tn−1Pn−1,0 +

(
n

n

)
(1− t)0tnPn−1,0.

As an example, consider the Bernstein polynomial of degree n = 2. Then we have

Bi,2 =

(
2

0

)
(1− t)2P0,0 +

(
2

1

)
(1− t)tP1,0 +

(
2

2

)
t2P2,0

= (1− t)2P0,0 + 2t(1− t)P1,0 + t2P2,0,

with Bernstein basis polynomials (1 − t)2, 2t(1 − t), and t2. If we allow t ∈ [0, 1]
and plot the individual Bernstein basis polynomials, then we can notice something
very informative about the Bézier curve.

1

1

As we increase the value of t, the amount of weight applied to each control point is
manipulated, so that the sum of the Bernstein basis polynomials evaluated certain
points always equates to 1.

The same is true for Bézier curves of even higher degree. Consider a Bézier
curve of degree n = 7. By 2.1, there must be 8 control points, namely P0,0, P1,0,
P2,0, P3,0, P4,0, P5,0, P6,0, and P7,0. Then the Bernstein polynomial is

B7(t) = (1− t)7P0,0 + 7t(1− t)6P1,0 + 21t2(1− t)5P2,0 + 35t3(1− t)4P3,0

+ 35t4(1− t)3P4,0 + 21t5(1− t)2P5,0 + 7t6(1− t)P6,0 + t7P7,0
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with Bernstein basis polynomials

b0,7 = (1− t)7

b1,7 = 7t(1− t)6

b2,7 = 21t2(1− t)5

b3,7 = 35t3(1− t)4

b4,7 = 35t4(1− t)3

b5,7 = 21t5(1− t)2

b6,7 = 7t6(1− t)

b7,7 = t7.

If we graph this, we obtain

1

1

Although this graph is far more complicated, it follows the same rules of a quadratic
Bézier curve.

2.2. De Casteljau’s algorithm. An efficient way to calculate Bézier curves is
with De Casteljau’s algorithm. As we showed in the first section, we construct a
cubic Bézier curve by examining linear interpolation along each segment connecting
each control point, and iterating the process until we reach a final point on the
highest level. This process of calculating points can be generalized to Bézier curves
of higher degree, and that is exactly what De Casteljau’s algorithm does.

Consider some sequence of control points P0,0, P1,0, P2,0,. . ., Pi,0. The number of
levels on some Bézier curve is given by the degree of the particular curve. Let us
denote the degree of the curve with n. Thus, after performing linear interpolation
on the control points above, we will obtain a sequence of points P0,1, P1,1, P2,1,. . .,
Pi−1,1. Iterating once more with these points, we will obtain a set of sequences of
points, where each sequence decreases by 1 element in size per iteration until it
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reaches a cardinality of 1, or a level of n. Then we will have the set

{{P0,0, P1,0, P2,0, . . . , Pi,0}, . . . , {P0,k, P1,k, P2,k, . . . , Pi−k,k}, . . . , {P0,n}}

for 1 ≤ k ≤ n.
If we want to find some Pi,n and represent its linear interpolation with a recur-

rence relation of other control points, we can use this expression:

Pi,n = tPi,n−1 + (1− t)Pi+1,n−1,

where i runs over all points on that level, and n denotes the level of the point. We
may also express this with a diagram:

Pi+1,n−1 Pi,n

Pi,n−1,

1−t

t

The arrows illustrate a multiplicative relationship between the recursive points and
the point Pi,n.

2.3. Rational Bézier curves. As shown with the Bézier curves above, variation
and manipulation of control points and the shape of the curve can be incredibly
useful and beautiful. However, if we would like a greater degree of variation and
control over the resulting shape of the curve, we can use rational Bézier curves.

Definition 2.4. A rational Bézier curve is defined as

B(t) =

∑n
i=0

(
n
i

)
(1− t)n−itiPi,0wi∑n

i=0

(
n
i

)
(1− t)n−itiwi

,

for control points P0,0, P1,0, P2,0, . . ., Pn,0, where wi is a weight that is applied to
each control point to further increase variation.

Notice that the numerator is a weighted Bézier curve whereas the denominator is
a weighted sum of Bernstein basis polynomials. The effect that these weights can
have on the curve vary, but wi ̸= 0.

To graph a rational Bézier curve in Rn, we generally consider a projection of
points from Rn+1 - which we will refer to as the homogeneous plane containing
homogeneous coordinates - to Rn. For example, if we want to construct a Bézier
curve in R2 then we have to consider a projection of points from R3 onto a plane,
where R3 acts as the homogeneous plane.

We can also use Bézier curves to exactly generate segments of conic sections.
This is largely possible due to the discrete nature of the control points and flexibility
of the curve.

While these topics of further exploration are indeed very interesting, they lie
beyond the scope of this paper.
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3. Derivative of the Bézier curve

The last characteristic of the Bézier curve that we will discuss is its derivative and
repeated derivatives. The first derivative of the Bézier curve can be useful when
discussing the tangent and normal vectors of a Bézier curve. Let us compute the
first derivative of a Bézier curve of degree n.

To begin, first compute the derivative of the Bernstein basis polynomial.

d

dt

(
n

i

)
(1− t)n−iti =

n!

i!(n− i)!
((−1)(n− i)(1− t)n−i−1ti + (1− t)n−iiti−1)

=
n!

i!(n− i)!
((1− t)n−iiti−1 − (n− i)(1− t)n−i−1ti)

=
n!

(i− 1)!(n− i)!
(1− t)n−iti−1 − n!

i!(n− i− 1)!
(1− t)n−i−1ti

= n

(
(n− 1)!

(i− 1)!(n− i)!
(1− t)n−iti−1 − (n− 1)!

i!(n− i− 1)!
(1− t)n−i−1ti

)
= n(bi−1,n−1 − bi,n−1).

Returning to the Bernstein polynomial, we can utilize this expression to calculate
its derivative.

d

dt
Bi,n(t) =

d

dt

( n∑
i=0

(
n

i

)
(1− t)n−itiPi,0

)
= P0,0

d

dt

(
n

0

)
(1− t)n + P1,0

d

dt

(
n

1

)
(1− t)n−1t+ · · ·+ Pn,0

d

dt

(
n

n

)
tn

= nP1,0(b0,n−1 − b1,n−1) + nP2,0(b1,n−1 − b2,n−1) + · · ·
+ nPn−1,0(bn−2,n−1 − bn−1,n−1)

= n
n−1∑
i=0

bi,n−1(Pi+1,0 − Pi,0)

= n

n−1∑
i=0

(
n− 1

i

)
(1− t)n−i−1ti(Pi+1,0 − Pi,0)(2)

As an example, let us calculate the Bernstein polynomial for the derivative of a
cubic Bézier curve.

d

dt
Bi,3(t) = 3

2∑
i=0

(
2

i

)
(1− t)2−iti(Pi+1,0 − Pi,0)

= 3

(
2

0

)
(1− t)2(P1,0 − P0,0) +

(
2

1

)
(1− t)t(P2,0 − P1,0) +

(
2

2

)
t2(P3,0 − P2,0)

= 3(1− t)2(P1,0 − P0,0) + 6t(1− t)(P2,0 − P1,0) + 3t2(P3,0 − P2,0).
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We can also take the derivatives of individual Bernstein basis polynomials and
graph them with the same restriction of t ∈ [0, 1]. Thus, for a Bézier curve with
n = 3, we have

b0,3 = 3(1− t)2

b1,3 = 6t(1− t)

b2,3 = 3t2.

If we graph these we obtain

1

1

Now we contrast this with the Bernstein basis polynomials of a cubic Bézier curve.

b0,3 = (1− t)3

b0,3 = 3(1− t)2

b0,3 = 3(1− t)t2

b0,3 = t3

After graphing, we have
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1

1

The derivative itself has its own meaning. As may be noticed from the diagrams in
section 1, the interpolation of P0,3 along the segment P0,2P1,2 is always tangent to
the Bézier curve. The derivatives of the Bernstein basis polynomials also illustrate
several intuitive characteristics of the cubic Bézier curve, and we can infer the
nature of the cubic Bézier curve from its shape.

If we represent the sequence of control points with Q0 = n(P1,0 − P0,0), Q1 =
n(P2,0 − P1,0),. . ., Qi = n(Pi+1,0 − Pi,0), we can rewrite the expression in (2) as

d

dt
Bi,n(t) =

n−1∑
i=0

(
n− 1

i

)
(1− t)n−i−1tiQi.

As can be illustrated by the cubic Bézier curve example from above, the derivative
of a Bézier of degree n is of one degree lower, and there are exactly n control
points. We refer to the derivative of a Bézier curve as its hodograph.

If we want to calculate the derivative of the Bézier curve at an arbitrary point
t ∈ [0, 1], then we can utilize a relationship between De Casteljau’s algorithm and
the derivative. Notice that if we expand (2) in terms of its sums, then we obtain
two individual Bézier curves C1(t) and C2(t).

n
n−1∑
i=0

(
n− 1

i

)
(1− t)n−i−1ti(Pi+1,0 − Pi,0) = n

( n−1∑
i=0

bi,n−1Pi+1,0 −
n−1∑
i=0

bi,n−1Pi,0

)
= n(C1(t)− C2(t)).

We will not outline it here, but it is possible to calculate C1(t) − C2(t) using De
Casteljau’s algorithm. If we are able to, we can determine the exact value of the
derivative of the Bézier curve at that point.
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References

[CK98] Shene C.-K. Introduction to Computing With Geometry Notes. 1998.
[KA00] Shavez Kaleem and Al Abrahamsen. Cubic Bézier Curves. 2000.
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