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Abstract. Cubic and biquadratic reciprocity have long since been referred to as “the forgotten

reciprocity laws”, largely since they provide special conditions that are widely considered to be
unnecessary in the study of number theory. However, this paper aims to approach reciprocity

with ample detail to motivate its existence. In this exposition of finite fields and higher

reciprocity, we will begin by introducing concepts in abstract algebra and elementary number
theory. This will motivate our approach toward understanding the structure and then existence

of finite fields, especially with a focus on understanding the multiplicative group F∗. While

surveying finite fields we will provide another proof of quadratic reciprocity. We will proceed to
investigate properties of the general multiplicative character, covering the concept of a general

Gauss sum as well as basic notions of the Jacobi sum. From there we will begin laying the
foundations for the cubic reciprocity law, beginning with a classification of the primes and

units of the Eisenstein integers, denoted Z[ω], and further investigations into the residue class

ring Z[ω]/πZ[ω] for π prime, which is predominantly the world in which cubic reciprocity lies.
We will then use multiplicative characters to define the cubic residue character and state

cubic reciprocity in its entirety. Following this, we provide a proof of the cubic reciprocity

law as well as its supplementary theorems using cubic Gauss sums. We will finish the section
on cubic reciprocity with a brief survey of the cubic residue character of the even prime 2

and state a significant result due to Gauss that summarizes the conditions for 2 to be a cubic

residue.
We conclude with the statement of biquadratic reciprocity and provide a brief discussion

on how it relates to cubic reciprocity in both its proof and usage of the analogy between the

Eisenstein integers, Z[ω], and the Gaussian integers, Z[i].
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Introduction

Reciprocity laws have been studied for over 200 years. As of now, there exist over 300 proofs
of quadratic reciprocity, but there exist far fewer proofs of cubic and biquadratic reciprocity.
Quadratic reciprocity, the first reciprocity law, was proven by Carl Friedrich Gauss in 1796,
and he deemed it the “Theorema Aureum”, or “Golden Theorem”. Gauss went on to prove
quadratic reciprocity in 6 different ways, with 2 more posthumously. Unlike other techniques,
one particular technique used, which certainly wouldn’t have been named what it is named
now, was quadratic Gauss sums. The formulation of quadratic Gauss sums would become the
first step toward investigating higher reciprocity laws. Gotthold Eisenstein first published his
proof of cubic reciprocity in 1844, and it used the techniques of Gauss and Jacobi sums. In
1850, Eisenstein published his paper on generalized higher reciprocity, a result now known as
Eisenstein reciprocity. Even though Eisenstein reciprocity eventually became a direct corollary
to work completed by Emil Artin on higher reciprocity using class field theory in the earlier
20th century, it became the first formal law for reciprocity of odd primes. Though Eisenstein
reciprocity is a generalisation of cubic and biquadratic reciprocity and is highly relevant to modern
research regarding reciprocity laws and algebraic number theory, it lies beyond the scope of this
paper.

Quadratic reciprocity asks the question: under what conditions does the congruence x2 ≡ a
(mod p) have solutions? Cubic reciprocity asks a similar question: under what conditions does
the congruence x3 ≡ a (mod p) have solutions? The difference is subtle, but cubic reciprocity
demands significantly more mechanics, and this is primarily what we will address in this paper.

This paper seeks to explore 3 reciprocity laws: a proof of quadratic reciprocity, a more familiar
result in the context of finite fields; a proof of cubic reciprocity; and finally the statement of
the law of biquadratic reciprocity. The preliminary section introduces necessary technical and
conceptual preliminaries. Section 1 defines, states, and proves facts concerning the structure and
existence of finite fields. Section 2 focuses primarily on motivating the study of multiplicative
characters alongside Gauss and Jacobi sums. Section 3 states and proves cubic reciprocity and
provides a sketch for the cubic character of 2. Section 4 concludes the paper with an overview of
the different components needed for the proof of biquadratic reciprocity.

As we see in section 1, finite fields play an important role in higher reciprocity. In this paper,
we survey the finite field F of order p and its multiplicative subgroup F∗ of order p−1. While the
construction and existence of this finite field are important facts of theory covered in section 1,
we use them primarily to show that a residue class ring involving the Eisenstein integers Z[ω] and
an element of Z[ω], introduced in section 3, are a finite field. This forms an important connection
between algebra and cubic reciprocity and uses objects such as associates, norms, etc. that we
are already familiar with. Since cubic reciprocity is considered over the finite field Z[ω]/πZ[ω]
for π a prime in Z[ω], it is only logical that biquadratic reciprocity will be considered over the
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finite field Z[i]/πZ[i] for π a prime in Z[i], where Z[i] is the Gaussian integers. We will omit
many of the details relating to Gaussian integers as it lies beyond the general scope of this paper,
but [IR90] gives a strict yet enlightening overview of its intricacies.

Though this paper aims to introduce finite fields and higher reciprocity to a fairly new reader,
it also assumes a certain degree of abstract mathematics knowledge. We assume fluency with
elementary number theory and most of algebra with the exception of some facts from ring theory
that are introduced when needed. [Gal02] is an excellent resource for understanding and gaining
useful insight on the group-theoretic and ring-theoretic portions of this paper. We also assume
familiarity with the definitions of the algebraic integers and algebraic numbers as well as their
algebraic structures; for instance, that the algebraic integers form a ring and that the algebraic
numbers form a field. Everything in relation to finite fields is constructed from elementary
principles with the exception of some facts and definitions about fields. As stated in the abstract,
immediately following finite fields - the backbone of much of what we will do here - we will survey
multiplicative characters and their uses, especially in the context of cubic residue characters. This
leads naturally into an elegant proof of cubic reciprocity after surveying the Eisenstein integers.

This expository work is a continuation of previous work done in [CR22] related to quadratic
reciprocity. For more insightful information about the history of early higher reciprocity, [Col77]
is an excellent introduction. As mentioned earlier, [IR90] is an extensive text not only for
higher reciprocity but for algebraic number theory as well, and contains a proof for Eisenstein
reciprocity for interested and advanced readers. [Rou12] provides even more detailed proofs for
cubic reciprocity and its supplements. Many algebraic results that we do not prove may be found
in [Gal02], and even so it is a wonderful text to gain further insight into finite fields.

Preliminaries

0.1. Algebra. Much of the algebra used in this paper is self-contained, in that any algebraic
definitions or theorems used are largely either stated or proven before they are needed. Readers
who are unfamiliar with more basic algebra, for instance that of groups, may find the opening
chapters of [Gal02] illuminating. Many later chapters of this textbook also cover the theory of
finite fields in more detail and are interesting in their own right. Knowledge of ring theory is also
assumed, but we will state and prove several of the larger results when they are needed.

Definition 1 (Homomorphism). We define a homomorphism to be a structure preserving map-
ping from one set to another set of the same type. In other words, if A and B are two sets of the
same type, then under the mapping ϕ : A→ B, it is true for all (x, y) ∈ A that

ϕ(xy) = ϕ(x)ϕ(y).

In this paper we will be utilising multiple types of homomorphisms, namely group homomorphisms
and ring homomorphisms, which in practice are functionally identical. Each homomorphism also
possesses a kernel.

Definition 2 (Kernel of a Homomorphism). Let ϕ be a homomorphism defined with ϕ : A→ B,
and let B have some identity element e. We define the kernel of ϕ to be

Ker(ϕ) = {x ∈ A|ϕ(x) = e}.
In other words, the kernel of ϕ is the set of elements in A that map to the identity element of B.

Much of the results that we are concerned with utilize ring theory, so we will define some basic
objects. Ideals are analogous to normal subgroups in group theory. In the following definitions
we let R be a commutative ring.

Definition 3 (Associate). We say two members of R are associate if for r, s ∈ R there exists
some unit u ∈ R such that r = us. In this case we say that r is associate to s.
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Definition 4 (Ideal). We define an ideal to be a subring R ⊂ R such that for every r ∈ R and
every a ∈ R, both ar, ra ∈ R.

Definition 5 (Maximal Ideal). Some ideal R is a maximal ideal if whenever there is some ideal
B of R with R ⊆ B ⊆ R, either B = R or B = R. In other words, it is the largest ideal of R
that is not R. An ideal of R is proper if it is not the entirety of R.

Definition 6 (Prime Ideal). Some ideal R is a prime ideal if for the product ab ∈ R, then either
a or b is in R.

A prime ideal is in fact a ring-theoretic analogue to Euclid’s Lemma.

Definition 7 (Principal Ideal). Some ideal R is a principal ideal if it can be generated by a
singular element.

Definition 8 (Integral Domain). We define an integral domain to be a nonzero commutative
ring.

Integral domains are generalizations of the ring of integers, and the product of any two members
yields a nonzero output.

Definition 9 (PID). An integral domain is a principal ideal domain, conventionally a PID, if
every proper ideal of the integral domain is principal.

Definition 10 (Euclidean Domain). Some integral domain R is a Euclidean domain if there
exists some function λ, known as the norm, that maps the nonzero elements of R to Z≥0 such
that if there exist some a, b ∈ R with b ̸= 0, then there also exist some c, d ∈ R with the property
that a = cb+ d and either d = 0 or λ(d) < λ(b).

Essentially, a Euclidean domain asserts the existence of a division algorithm (more specifically,
the Euclidean algorithm) over a ring.

Remark 1. It can be seen that k[x] for some field k is a Euclidean domain, as we can map
polynomials from k[x] to the degrees of polynomials from Z≥0 via the norm.

Definition 11 (UFD). An integral domain R is a unique factorization domain, conventionally
UFD, if every nonzero element of x in R may be written as a product of some unit u ∈ R and
some finite number of irreducible elements pi as follows:

x = up1p2 · · · pn.
Furthermore, this representation is unique in that any other x that can represented in the same
way must have a bijection between its irreducible elements and pi with 1 ≤ i ≤ n.

Remark 2. Integral domains, Euclidean domains, PIDs, and UFDs are ultimately what we will
use to study finite fields later in section 1. A diagram of their class inclusions may be described
as follows.

field ⊂ Euclidean domain ⊂ PID ⊂ UFD ⊂ integral domain

Figure 1. Diagram of class inclusions for algebraic structures

Class inclusions are useful because they allow us to make statements about complex algebraic
structures when working with simpler algebraic structures.

We show in Theorem 0.1 that every Euclidean domain is a PID. It is also possible to show
that every PID is a UFD and that every UFD is an integral domain. We will not do this, but
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in the case of Z[ω], the Eisenstein integers, we note that since it is a UFD it is also an integral
domain.

We define a field more rigorously in section 1.

Theorem 0.1 (Every Euclidean domain is a PID). If R is an integral domain and I ⊆ R is an
ideal, then there exists some element a ∈ R such that I = Ra = aR = {ra = ar|r ∈ R}. This is
necessarily the requirement to be a PID.

Proof. We proceed by double inclusion. First consider the set of nonnegative integers given by
{λ(b)|b ∈ I, b ̸= 0}. By well-ordering, every nonnegative set of integers must have a lowest term;
we call this term a ∈ I, a ̸= 0 with the property that λ(a) ≤ λ(b) for all b ∈ I, b ̸= 0. We claim
that I = Ra = aR, namely that the ideal I is generated by a. By the definition of I, we know that
Ra = aR ⊆ I. We want to show that I ⊆ Ra = aR. To begin, we know that since I is a subring
of R, it retains the properties of R and is thus a Euclidean domain. Namely, for any b ∈ I, there
exist c, d ∈ R such that b = ca + d with either d = 0 or λ(d) < λ(a). Clearly d = b − ca ∈ I,
so it is not possible for λ(d) < λ(a). Therefore d = 0, and so b = ca. Then b = ca ∈ I. Since
we showed this for any b, it follows that I = Ra = aR, and thus every Euclidean domain is a
PID. ■

In developing finite fields in section 1 we will need the following results.

Theorem 0.2 (Lagrange’s Theorem; Gallian). Let G be a finite group and let H be a subgroup of
G. Then the order of H divides the order of G. Furthermore, there are exactly |G|/|H| distinct
left or right cosets of H in G.

Proof. The proof may be found in Chapter 7 of [Gal02]. ■

An important result that is necessary to prove Proposition 1.12 is the First Isomorphism Theorem,
alternatively referred to as the Fundamental Theorem of Group Homomorphisms. The theorem
can easily be extended to rings for our purposes, but we will only prove the theorem for groups.

Theorem 0.3 (First Isomorphism Theorem; Gallian). Let ϕ be a group homomorphism from a
group G to G. Then the mapping from the quotient group G/Ker(ϕ) to the image of ϕ given as
ϕ(G) is an isomorphism, i.e.

G/Ker(ϕ) ≈ ϕ(G).

Before we can prove this theorem, let us first examine what the different components are. We
will first examine the quotient group G/Ker(ϕ). This set is defined as {gH|g ∈ Ker(ϕ)} for H a
normal subgroup of G, so we can write it as gKer(ϕ) for all g ∈ G. The set ϕ(G) is also known as
the image of G or im(ϕ). If we consider these simplifications, then we can write that the mapping
is now defined as gKer(ϕ) → ϕ(g) for all g ∈ G. Now we proceed with the proof.

Proof of Theorem 0.3. For the sake of convenience, we will use the function ψ to denote the
mapping gKer(ϕ) → ϕ(g). An isomorphism requires that the mapping between two groups
preserve group operations and is one-to-one (namely, an injective function, so we necessarily
need to show that the homomorphism is a function). To begin, we must first show that ψ
is well-defined, or that for any g, the LHS of the mapping remains unique: that is, g is the
only such coset representative that generates the coset. Suppose that there exist x, y such that
xKer(ϕ) = yKer(ϕ). Then, multiplying both sides by y−1 we have that y−1x ∈ Ker(ϕ). Then,
by the definition of the kernel, we have e = ϕ(y−1x) = ϕ(y−1)ϕ(x) = (ϕ(y))−1ϕ(x). Multiplying
both sides by ϕ(y), this means that ϕ(x) = ϕ(y), so we have shown that ψ is well-defined and ψ
is a function. Next we need to show that ψ preserves operations. Notice that

ψ(xKer(ϕ)yKer(ϕ)) = ψ(xyKer(ϕ)) = ϕ(xy) = ϕ(x)ϕ(y) = ψ(xKer(ϕ))ψ(yKer(ϕ)),
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which indeed shows that the group operation is preserved. Finally, we need to show that ψ is
one-to-one. Note that ψ(g1Ker(ϕ)) = ψ(g2Ker(ϕ)) =⇒ ϕ(g1) = ϕ(g2). Multiplying both sides
by ϕ(g2)

−1 we have e = (ϕ(g2)
−1ϕ(g1) = ϕ(g−1

2 )ϕ(g1) = ϕ(g−1
2 g1). Therefore, by the definition

of the kernel, g−1
2 g1 ∈ Ker(ϕ). Hence g1Ker(ϕ) = g2Ker(ϕ), proving that ψ is one-to-one. Thus

the mapping ψ is an isomorphism. ■

To conclude this subsection, we include some definitions in elementary field theory that will be
useful to the language we use in our investigation of the existence of finite fields. We formally
define a field in section 1.

Definition 12 (Field Extension). Let K and L be fields such that K ⊆ L is a subfield of L. We
define a field extension K of L, which we denote as L/K, to be a field such that K is a subfield
of L. In this way, L is referred to as a K-vector space as it forms a vector space over the scalar
field K.

We might say that L is a field extension, or simply extension, of K. A useful concept is the idea
of an intermediate field extension. If L is an extension of F , and F is an extension of K, then F
is an intermediate field extension. We now have a definition for the degree of a field extension.
Let K and L be the same fields.

Definition 13 (Degree of a Field Extension). We define the degree of a field extension, denoted
[K : L], to be the dimension of the vector space L over its scalar field K.

0.2. Elementary Number Theory. In this paper we assume a general knowledge of elementary
number theory, including results such as Bézout’s Lemma, Fermat’s Little Theorem, quadratic
reciprocity, and including other results concerning quadratic residues and nonresidues. Some
specific concepts such as primitive roots and units will be introduced as needed. Let (a/p)
denote the Legendre symbol.

Lemma 0.4. Let gcd(a, p) = 1 and a, b ∈ Z for p prime. Then

(1)

a ≡ b (mod p) ⇐⇒
(
a

p

)
=

(
b

p

)
(2) (

0

p

)
= 0

(3) (
a2

p

)
= 1.

Proof. The proof of this may be found in the preliminary section of [CR22]. Everything follows
through the definition of the Legendre symbol. ■

Lemma 0.5. Let p prime, gcd(a, p) = 1, and a, b ∈ Z. Then

(1)

a
p−1
2 ≡

(
a

p

)
(mod p)

(2) (
a

p

)(
b

p

)
=

(
ab

p

)
.

Proof. The proof of this may be found in the preliminary section of [CR22]. ■
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One result that will be of utmost use to us in this paper is the law of quadratic reciprocity. Though
it ultimately resides in elementary number theory, it is a stepping stone for higher reciprocity.

Theorem 0.6 (The Law of Quadratic Reciprocity). Let p, q ∈ Z be odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2 · q−1

2 .

Alternatively, we can express this as(
p

q

)
=

{
( qp ) if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)

−( qp ) if p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

Proof. Several proofs of this may be found in [CR22] as well as Chapter 5 of [IR90]. We will also
provide a proof for this result using finite fields in section 1 due to Hausner. ■

There is also a supplement to quadratic reciprocity concerning whether −1 or 2 is a quadratic
residue or nonresidue modulo p. In elementary number theory, the case of (−1/p) is known
as Euler’s Criterion; when considering cubic residues, the case of −1 is trivial as −13 = −1,
implying that it is always a cubic residue. The case of 2 will provide useful insights when
considering whether 2 is a cubic residue or nonresidue in a similar sense.

Theorem 0.7 (Supplement to Theorem 0.6). Let p be an odd prime. Then

(1) (
−1

p

)
= (−1)

p−1
2 ,

(2) (
2

p

)
= (−1)

p2−1
8 .

Proof. The proof for (1) follows immediately by letting a = −1 in Lemma 0.5. The proof for (2)
may be found in sections 2.2 and 4.2 of [CR22]. ■

As we will investigate later in section 2, Gauss sums generalize the notion of a quadratic Gauss
sum to be expressed in terms of a multiplicative character of higher degree. In [CR22], we
developed notions of quadratic Gauss sums in order to prove quadratic reciprocity. As we will
see later in section 1.5, another proof of quadratic reciprocity can be given by combining the
theory of finite fields and quadratic Gauss sums. As such, we state some elementary properties
of the quadratic Gauss sum that will be useful later.

Definition 14 (Quadratic Gauss sum).

ga =
∑
t

(
t

p

)
ζatp ,

where ζp is a pth root of unity.

For the sake of notational convention, we denote the quadratic Gauss sum when a = 1, or g1, as
simply g. Proofs for the following identities may be found in section 4.3 of [CR22].

Proposition 0.8.

ga =

(
a

p

)
g.

Proposition 0.9.

g2 = (−1)
p−1
2 p.

A useful tool we will use later is the Kronecker delta, δ(x, y), which is defined to be 1 if x ≡ y
(mod p) and 0 otherwise.
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0.3. Möbius Inversion. A useful tool that will be used throughout this paper is the Möbius
function and a powerful result known as Möbius inversion. Let n ∈ Z+.

Definition 15 (Möbius function).

µ(n) =

 0 if n non-squarefree,
1 if n = 1,
(−1)k if n = p1p2 · · · pk for distinct pi.

An important property of the Möbius function is that it is multiplicative, or µ(mn) = µ(m)µ(n),
the proof of which requires that we show it holds for m = n = 1 and then show that it also holds
for m and n squarefree. There are many other interesting properties of the Möbius function, but
we are most interested in Möbius inversion. We first need the following result.

Lemma 0.10. Consider the summatory function F (n) =
∑

d|n µ(d). Then

F (n) =

{
1 if n = 1,
0 if n > 1.

Proof. The result is obvious for n = 1. To prove it for n > 1, prove that it holds for pk

for some k > 0, and then use the multiplicativity of µ(n) to prove the result for any integer
n = pa1

1 · · · pat
t > 1 using the information gained from computing F (pk). ■

Recall that an arithmetic function, or number-theoretic function, is a function that maps Z to
Z. We now introduce Möbius inversion.

Theorem 0.11 (Möbius Inversion). Suppose that f is an arithmetic function and that F is its
summatory function. Then

f(n) =
∑
d|n

µ(d)F

(
n

d

)
.

Proof. ∑
d|n

µ(d)F

(
n

d

)
=

∑
d|n

µ(d)
∑
e|nd

f(e) (By definition of F .)

=
∑
d|n

∑
e|nd

µ(d)f(e) (By combining double sums.)

=
∑
e|n

∑
d|ne

µ(d)f(e) (By divisibility in indices.)

=
∑
e|n

f(e)
∑
d|ne

µ(d) (By rearranging the double sums.)

Notice that
∑

d|ne
µ(d) = 0 since n/e > 1. If we allow n/e = 1, then n = e, so

∑
d|ne

µ(d) = 1.

Then ∑
e|n

f(e)
∑
d|ne

µ(d) = f(n)(1) = f(n).

■

The importance of Möbius inversion is that it allows us to form an algebraic relationship between
arithmetic functions and their summatory functions. This will become evident in the next section
and following sections.
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1. Finite Fields

The language of cubic, biquadratic, and higher reciprocity is expressed in the language of finite
fields, so naturally we will explore notions of a finite field in regard to both construction and
existence as well as classification of its elements. The reason that finite fields are so fundamental
to the study of reciprocity will be evident later.

Finite fields may also be referred to as “Galois fields” as they were created by Évariste Galois
and are used widely in Galois theory and higher reciprocity. In this paper, we refer to such a
field as a finite field.

A field is defined as follows.

Definition 16. We say that a set F is a field if it has two operations +, or addition (sometimes
denoted as ⊕), and ∗, or multiplication, and it satisfies the following axioms:

(1) F is an abelian group under ⊕ with identity element 0,
(2) the multiplicative set F∗ = F/{0} is an abelian group under ∗ with identity element 1,
(3) and it satisfies the distributive law that ∀a, b, c ∈ F, (a⊕ b) ∗ c = (a ∗ c)⊕ (b ∗ c).

Naturally, we can define a finite field to be one such field with a finite number of elements, say
q. Then, since we exclude the additive identity, the multiplicative group F∗ has q − 1 elements.
Therefore every element α ∈ F∗ satisfies the relation αq−1 = 1. Similarly, every element β ∈ F+

the additive group satisfies the relation βq = β + · · · + β = β. In either case, α behaves like a
generator of the multiplicative or additive group, but we only consider the multiplicative group
of a finite field in this paper.

1.1. The Multiplicative Group of a Finite Field is Cyclic. We denote the finite field of
single-variable polynomials in x as F[x].

Proposition 1.1. Suppose that F is a finite field of order q. Then

xq − x =
∏
α∈F

(x− α).

Proof. By the construction of F, notice that every element α ∈ F is a root of xq − x by the
definition of α as a generator of F. Since the polynomial on the RHS runs through all q elements
of the additive group F, its maximum degree must be q. Therefore the result follows from the
factorization of the LHS. ■

From this result we can prove the following about subfields.

Corollary 1.2. Let K be a field with F ⊂ K a subfield of K. An element α ∈ K is also contained
within the subfield F if and only if αq = α.

Proof. By our original construction, any root α ∈ F of xq − x must satisfy the relation αq = α.
By Proposition 1.1, the roots of some polynomial xq − x are exactly the elements of F (by its
construction from α ∈ F), so we have proven the forward direction. We now prove the backward
direction. If αq = α, then α must be a root of xq − x by our original construction. Since the
condition for an element to be a root of xq − x is for it to be contained within F, we have α ∈ F,
which proves the result. ■

In order to develop another necessary corollary toward our result about F∗, we must establish a
result for polynomials in a field. Let k denote an arbitrary field.1

Proposition 1.3. Let f(x) ∈ k[x]. Suppose that deg(f(x)) = n. Then f(x) has at most n
distinct roots.

1While the notation R[x] to denote the ring of single-variable polynomials for some field R is often convention,

we prefer the notation k[x] to distinguish the fact k is a field for which polynomials in k[x] take coefficients.
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Proof. We prove this by induction on the degree of f(x) ∈ k[x]. If n = 1, then the assertion
is clearly true, as a monic polynomial clearly has both a minimum and maximum equivalent
number of roots, hence exactly 1 distinct root. Assume that the assertion is true for polynomials
of degree n− 1. This allows us to extend the assertion to degree n later.

To begin, if f(x) has no roots in the field k, then clearly we are done as f(x) therefore has
0 roots. However, if α is a root, then by the division algorithm for polynomials, we can write
f(x) = q(x)(x − α) + r, where r is some constant and q(x) ∈ k[x]. If we let x = α then
f(α) = q(α)(α − α) + r = r. We assumed that α was a root of f(x), so r = 0. Therefore
q(x)|f(x) and f(x) = q(x)(x− α) and deg(q(x)) = deg(f(x))− 1 = n− 1. Let β ̸= α be another
such root of f(x). Then f(β) = 0 = (β−α)q(β), which is only possible when q(β) = 0. Therefore
we have shown that q(x) has at most n−1 distinct roots as we can repeat the process for distinct
roots β1 ̸= β2 ̸= · · · ̸= βn−1. Thus, since q(x) has at most n− 1 roots, f(x) has at most n roots,
and we are done. ■

We now present one final corollary that relates polynomials to the polynomial xq − x and then
prove that the multiplicative group of a finite field is cyclic.

Corollary 1.4. If some polynomial f(x)|xq − x, then f(x) has exactly d distinct roots, where
deg(f(x)) = d.

Proof. Let the product f(x)g(x) = xq − x, where g(x) = (xq − x)/f(x) has the property
deg(g(x)) = q − d. Assume that f(x) has fewer than d distinct roots. Then by Proposition
1.3, the product f(x)g(x) would have fewer than d + (q − d) = q roots, noninclusive. However,
by the definition of the product, the product has at most q roots, contradicting our assumption.
Therefore f(x) has d distinct roots. ■

The final proof of this section requires that we are familiar with some basic facts about cyclic
groups. The following lemma can be proven using the Fundamental Theorem of Cyclic Groups
and other results in elementary group theory.

Lemma 1.5 (Gallian). If d is a positive divisor of n, the number of elements of order d in a
cyclic group of order n is ϕ(d).2

Proof. The proof may be found in Chapter 4 of [Gal02]. ■

We now proceed with the final proof.

Theorem 1.6. The multiplicative group of a finite field is cyclic.

Proof. In order to prove that the multiplicative group of a finite field is cyclic, we must prove
several important properties about its generator. Note first that some multiplicative group of a
finite field F∗ must have order q− 1 in this proof. First, if there exists some subgroup with order
d|q − 1, then xd − 1|xq−1 − 1 because we are using F[x] and degrees of polynomials in F[x] as an
analogue for considering orders of the multiplicative group F∗ and its subgroups. By Corollary
1.4, we know that since xq−1 − 1 and xq − x are equivalent forms (this is true because Corollary
1.4 also makes an assertion about divisibility in F∗), we therefore can say that xd − 1 has d
distinct roots. Therefore the subgroup of F∗ with elements satisfying the relation xd − 1 = 0 or
xd = 1 has order d.

Let ψ(d) be the number of elements in F∗ of order d. Recall that the order of an element is
the number of times an operation must be applied in order to return to itself; in this case, we are
defining the arithmetic function ψ(d) to be the order of the subgroup of F∗ containing elements
with order exactly d. Then we can make the assertion that for every c that divides this order

2Recall that the Euler totient function ϕ(n) returns the number of integers coprime to n, i.e. ϕ(n) =

|{a| gcd(a, n) = 1}|.
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d, there exists some summatory function that takes in all such c and outputs this exact order d.
We can express this as

(1.1)
∑
c|d

ψ(c) = d.

For example, let there exist some set of divisors c1, c2, . . . , cn such that c1, c2, . . . , cn|d. Then in
1.1 we have ∑

c|d

ψ(c) = ψ(c1) + ψ(c2) + · · ·+ ψ(cn) = d.

Therefore, by Möbius inversion, we can write

ψ(d) =
∑
c|d

µ(c)F

(
d

c

)
.

Notice that the summatory function F no longer applies here. This is because for each divisor
ci of d, the arithmetic function ψ(d) simply counts the number of ci, adding 1 each time to its
value. Therefore, we can write ∑

c|d

µ(c)F

(
d

c

)
=

∑
c|d

µ(c)
d

c
.

Notice too, however, that this is simply the number of divisors coprime to d, or ϕ(d). We can
remove µ(c) because it takes in divisors of d, which will always evaluate to 1 if there are k ≡ 0
(mod 2) distinct prime factors, and 0 if there are k ≡ 1 (mod 2) distinct prime factors. In either
case, we have ψ(d) = ϕ(d), or the number of elements in F∗ of order d is equivalent to the number
of divisors coprime to d. By Lemma 1.5, F∗ is cyclic. ■

1.2. nth Power Residues and a Connection to Finite Fields. In this section, we focus on
proving the following important result. Let n ∈ Z+ and let |F| = q so |F∗| = q − 1.

Theorem 1.7. Let α ∈ F∗. Then the equation xn = α has solutions if and only if α(q−1)/d = 1,
where d = gcd(n, q − 1). If there indeed are solutions, then there are exactly d solutions.

In order to understand the proof of the prior result in the context of finite fields, we begin by
proving a proposition for which the prior result is a generalization. Recall that for m,n ∈ Z+ and
a ∈ Z with gcd(a,m) = 1, we define a to be an nth power residue modulo m if xn ≡ 1 (mod m)
is solvable and a is a solution.

Proposition 1.8. If m ∈ Z+ has primitive roots and gcd(a,m) = 1, then a is an nth power
residue modulo m if and only if aϕ(m)/d ≡ 1 (mod m), where d = gcd(n, ϕ(m)).

In order to prove this result, we must recall some facts in elementary number theory. Recall that
the set of residue classes modulo m is denoted by Z/mZ. This is in fact a ring, but we will not
prove it here. The set of all representatives for the residue classes of Z/mZ is the complete set
of residues modulo m.

Perhaps the most elementary study of congruences can be summarized in linear congruences
of the form ax ≡ b (mod m). In particular, we are interested in determining the solvability of
linear congruences of this form. For some interesting perspective, the number of solutions to
a linear congruence is the value of n in an n-tuple (a1, . . . , an) such that f(a1, a2, . . . , an) ≡ 0
(mod m) for a linear congruence f(x1, x2, . . . , xn) ≡ 0 (mod m) in n variables. Uniqueness of
such an n-tuple is assumed, so that if there exists some n-tuple (b1, . . . , bn) that also satisfies the
polynomial equation, it must be the exact same n-tuple.

As we move forward, we will begin by looking at linear congruences in one variable.
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Proposition 1.9. Let d = gcd(a,m). The linear congruence ax ≡ b (mod m) has solutions if
and only if d|b. Moreover, if d|b, then there are exactly d solutions. Furthermore, if x0 is a
solution, then all other solutions can be written in the form x0 +m′, . . . , x0 + (d− 1)m′.

Proof. To preface the proof, we need the following remark. We let d = gcd(a,m). We also set
a′ = a/d and m′ = m/d. Then gcd(a′,m′) = 1 since a′ and m′ are in their ultimately reduced
forms.

We prove the biconditional first. We begin with the forward direction. Let x0 be a solution
to the linear congruence. Then it satisfies the relation ax0 − b = my0 for some y0 ∈ Z. Then by
the opening remark in this proof, we have b = ax0 −my0 = da′x0 − dm′y0 = d(a′x0 −m′y0);
thus d|b. We now prove the backward direction. Suppose that d|b. By Bézout’s Lemma, there
must exist integers x′0 and y′0 such that ax′0 − my′0 = d. If we let some c = b/d and multiply
both sides by c, we obtain a(x′0c) −m(y′0c) = b. Letting x0 = cx′0 and y0 = cy′0, we can write
ax0 − b = m(y0) or ax0 −my0 = b, which gives the linear congruence a solution.

We now prove that there are exactly d solutions to the congruence ax ≡ b (mod m). Suppose
that both x0 and x1 are solutions such that ax0 ≡ b (mod m) and ax1 ≡ b (mod m). This
implies that a(x1 − x0) ≡ 0 (mod m). Therefore, for two distinct pairs a,m and a′,m′ we have
m|a(x1 − x0) and m′|a′(x1 − x0) respectively. The second statement implies that m′|x1 − x0
by our opening remark; in other words, for some k ∈ Z we have x1 = x0 + km′. As we
vary the value of k from 0 to d − 1, we see that there are incongruent solutions in the form
x0, x0+m

′, . . . , x0+(d−1)m′. Suppose that another solution to ax ≡ b (mod m) is x1 = x0+km
′.

By the division algorithm, there exist r, s ∈ Z such that k = rd+s where 0 ≤ s < d. Substituting,
this gives x1 = x0 + (rd+ s)m′ = x0 + sm′ + rm. Since x1 = x0 + km′, we must have r = 0, so
k = s. Since s runs from 0 to d− 1, there are thus exactly d solutions. ■

This establishes the solvability of linear congruences. The equation ax ≡ b (mod m) is equiv-
alent to writing the equivalence relation [a]x = [b] in the ring Z/mZ. By Proposition 1.9, the
congruence has solutions if and only if d|b = 1, which is equivalent to when gcd(a,m) = 13. Thus,
[a] is a unit if and only if gcd(a,m) = 1. A special fact about Z/mZ is that there are exactly
ϕ(m) such units. If we let m = p be prime, then all residue classes in Z/pZ are units, and we
can prove that, in both the multiplicative and additive cases, Z/pZ is a field.

With this result, Euler’s Theorem can be proven using the elementary fact that a residue class
is a unit if, when multiplied with another residue class, yields the [1] residue class modulo m.

Theorem 1.10 (Euler’s Theorem). If gcd(a,m) = 1, then

aϕ(m) ≡ 1 (mod m).

An immediate corollary for prime m is Fermat’s Little Theorem, which is used widely in elemen-
tary number theory.

Corollary 1.11 (Fermat’s Little Theorem). If p prime and p ∤ a, then
ap−1 ≡ 1 (mod p).

We are becoming carried away with ourselves with these results. In a final step before our proof of
Proposition 1.8, we note that much like our proof of Theorem 1.6, we were studying the existence
of an x that acts as a generator for F∗. Now we consider the analogue over U(Z/nZ), the group
of units of the integers modulo n. It can be shown that if p prime, U(Z/pZ) is cyclic; the proof
is essentially identical to the proof of Theorem 1.6. We say that a is a primitive root modulo p if
p− 1 is the smallest integer such that ap−1 ≡ 1 (mod p)4. Now we proceed to prove Proposition
1.8.

3We say that the residue class [a] is a unit if and only if it satisfies [a]x = 1, or if ax ≡ 1 (mod m) has solutions.
4We also define an integer a to be a primitive root modulo p prime if its residue class [a] generates U(Z/pZ),

the group of units of Z/pZ.
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Proof of Proposition 1.8. To begin, let g be a primitive root modulom, and let a = gb and x = ay.
Then the nth-degree congruence xn ≡ 1 (mod m) is equivalent to ayn ≡ gyn ≡ gb (mod m). The
second equivalence can be taken due to the fact that we assumed g to be a primitive root modulo
m. Simplifying, we have gny−b ≡ 1 (mod m). Since g is a primitive root, this only occurs if ny−b
is some multiple of ϕ(m) by Euler’s Theorem. Therefore ny − b ≡ kϕ(m) for k ∈ Z so ny ≡ b
(mod ϕ(m)). This is a linear congruence and is solvable if and only if d|b by Proposition 1.9.
To show the forward direction of this proposition, let d|b. Then aϕ(m)/d ≡ g(bϕ(m))/d ≡ glϕ(m)

(mod m) for some integer constant l, or glϕ(m) ≡ 1 (mod m). To show the backward direction,
let aϕ(m)/d ≡ 1 (mod m). Then g(bϕ(m))/d ≡ 1 (mod m), which only occurs when b/d is an
integer. This only occurs if d|b. Therefore d|b, and we have proven both directions. ■

Notice also that since the linear congruence is solvable, d = gcd(n, ϕ(m)), and there are exactly d
solutions. This deduction is necessary in the proof of Theorem 1.7. We now return to our proof
of Theorem 1.7.

Proof of Theorem 1.7. The statement of the theorem appears very similar to that of Proposition
1.8. To begin, let γ be a generator of the cyclic group F∗. As in Proposition 1.8, we let α = γa,
and x = γy. Then the equivalence relation xn = α is equivalent to γyn = γa. We can reduce this
equivalence to a congruence by removing the base of γ as follows. Dividing both sides by γb, we
have γny−b = 1. Similar to the proof of Proposition 1.8, and due to the fact that we defined γ
to be a generator of F∗, we must have that ny− b is an integer multiple of q− 1, the order of the
multiplicative group of the finite field. Therefore ny − b = k(q − 1) so ny ≡ b (mod q − 1). As
in Proposition 1.8, this is a linear congruence, and we can apply Proposition 1.9 as follows.

The congruence is solvable if and only if d|a. Suppose first that d|a. Then α(q−1)/d ≡
γ(a(q−1))/d ≡ γr(q−1) for some integer constant r. Since r must be an integer, γr(q−1) = 1.
To prove the backward direction, let α(q−1)/d = 1. Then γ(a(q−1))/d = 1, which is only possible
if d|a, as γ is a generator of F∗. Therefore d|a and we have proven both directions. ■

Notice that in this result, since the linear congruence is solvable, the number of solutions is given
by d = gcd(n, q − 1) by Proposition 1.9, and we are done.

Remark 3. In relation to nth power residues, it is also interesting consider what might happen
to the number of solutions to the equation xn = α for α ∈ F∗ with varying values for d. If
gcd(n, q − 1) = 1, then there is only 1 unique solution to the equation xn = α. Alternatively, if
n|q − 1 instead, then there are exactly gcd(n, q − 1) = q−1

n solutions to xn = α, and there are n
solutions if α = βn for some β ∈ F∗.

1.3. Structure of Finite Fields. Now that we have surveyed the multiplicative group of a
finite field, we might be interested in determining further characteristics of finite fields and their
structural properties, especially in regard to their construction. Most notably, in this section we
determine the order of a finite field and show how finite fields have a very intuitive relationship
with their subfields. These results prepare us in proving the existence of finite fields later.

Proposition 1.12. Let F be a finite field. The integer multiples of the identity form a subfield
of F that is isomorphic to Z/pZ for p a prime.

Proof. As a means of standardizing notation, we use e as the identity of the multiplicative group
of F given as F∗ in this proof. Define ϕ as a mapping of the integers to the finite field F that
takes every n ∈ Z to some ne, or the integer multiples of the multiplicative identity of F. This
is a ring homomorphism because the original operation is preserved, and we are operating under
ϕ from the ring of integers to F. It is not difficult to show that ϕ is bijective and satisfies
ϕ(a+ b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b). The resulting image, namely the nes, form a finite
subring of F. More specifically, since Z commutes, it is also a nonzero commutative ring, or an
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integral domain. The kernel of the homomorphism is thus Ker(ϕ) = {n ∈ Z|ϕ(n) = e}. In this
way, the kernel is a nonzero prime ideal, meaning that either n or e must belong to the finite
subring and naturally the integral domain. Thus, by Theorem 0.3, the field Z/pZ of the integers
modulo p a prime (Note: the set pZ is exactly the aforementioned Ker(ϕ) because it is a prime
ideal of Z) must be isomorphic to the image of ϕ, or im(ϕ), in the mapping from Z to F. ■

Now that we have proven a fact about the finite field and its relation to the field Z/pZ, we further
explore properties of F in determining its order. This brings us to the following result.

Proposition 1.13. The number of elements in a finite field is a power of a prime. Namely, a
finite field over a vector space with dimension n has order pn.

Proof. From linear algebra, we know that every field can be expressed as a finite-dimensional
vector space over each of its subfields, or in this case, every field is a finite-dimensional vector
space over Z/pZ. We will not prove this here as it lies beyond the scope of this paper, but the
result is critical in our proof of this result.

Let n be the dimension of the vector space and let ω1, ω2, . . . , ωn be a basis of F. By the
construction of a finite-dimensional vector space, every element in F has a unique representation
as a linear combination of all vectors in the basis and elements of Z/pZ, namely as a1ω1+a2ω2+
· · ·+ anωn where ai ∈ Z/pZ for all 1 ≤ i ≤ n. Since the field Z/pZ has prime order p, we know
that there are exactly p possible inputs for each ai. This gives us p

n total linear combinations of
the basis, so the order of F is pn. ■

As we continue studying F, we introduce a definition. Let e represent the multiplicative identity
of a finite field F. We define the characteristic of a finite field F to be the minimum element p
to satisfy pe = 0, where 0 is the additive identity. As we have seen before, p must be a prime as
it is the only possible integer that satisfies the isomorphism in Proposition 1.12. An important
fact about the characteristic is that when applied to any element of the finite field, it yields the
additive identity. In other words, if there is some α ∈ F, then pα = p(αe) = (pe)α = 0 ·α = 0 by
the commutativity of F. This leads us to the following result.

Proposition 1.14. If a finite field F has characteristic p, then for α, β ∈ F and some d ∈ Z+,

(α+ β)p
d

= αpd

+ βpd

.

Proof. We prove this by induction on d. In the base case where d = 1, this is obvious as
(α+ β)p =

∑p
r=0

(
p
r

)
αp−rβr. Expanding, we have

αp +

(
p

1

)
αp−1β +

(
p

2

)
αp−2β2 + · · ·+

(
p

p− 1

)
αβp−1 + βp.

Since F has characteristic p, each multiple of p must be equivalent to the additive identity. In
other words, since p divides each binomial coefficient where i = 1, 2, . . . , p−1 (this can be proven
using simple facts about the binomial coefficient), their multiples equate to the additive identity.
Therefore we have (α+ β)p = αp + βp.
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Assume that this relation holds for some d = k. Then (α + β)p
k

= αpk

+ βpk

. We wish to
prove that it holds for d = k + 1. As a result of the inductive hypothesis, we have

((α+ β)p
k

)p = (αpk

+ βpk

)p

(α+ β)p
k+1

=

p∑
r=0

(
p

r

)
(αpk

)p−r(βpk

)p

=

p∑
r=0

(
p

r

)
(αpk

)p(αpk

)−r(βpk

)p

= αpk+1

+

(
p

1

)
αpk+1

α−pk

βpk+1

+ · · ·+
(

p

p− 1

)
αpk+1

α−pk(p−1)βpk+1

+ βpk+1

= αpk+1

+ βpk+1

,

where intermediate terms in the binomial expansion vanish modulo p since F has characteristic
p. ■

Now that we have information about binomial powers and the order of finite fields, we may be
interested in determining not only properties of F but of subfields of the finite field F for which
Z/pZ is the scalar field. For the sake of the following results, we will denote such fields as E. Let
n be the order of F and d be the dimension of E. It is possible to show, using techniques of field
extensions and algebraic extensions, that d|n. We will instead provide an alternate proof that d|n
using finite fields. The underlying concept suggests that there is one and only one intermediate
subfield E corresponding to each divisor d of n. In order to prove this we begin with the following
elementary results.

Lemma 1.15. Let F be a field. Then for xl − 1, xm − 1 ∈ F[x] we have that xl − 1|xm − 1 if and
only if l|m.

Proof. Suppose that l ∤ m, or that m = ql + r for some remainder r ∈ [0, 1) and divisor q ∈ Z.
Then,

xm − 1

xl − 1
=
xqlxr − 1

xl − 1
=
xql − 1

xl − 1
xr +

xr − 1

xl − 1
.

By polynomial division, the first term on the RHS can be written as the polynomial xr((xl)q−1+
(xl)q−2 + · · · + xl + 1). The remaining quotient can be seen to be 0 if and only if r = 0, as it
evaluates to 0/(xl−1) = 0. Therefore the RHS is a polynomial if and only if r = 0, which occurs
if and only if l|m, so we are done. ■

Remark 4. This result is also true for positive integers in place of x and can be summarized as
follows: if a ∈ Z+, then al − 1|am − 1 if and only if l|m. We will not prove it here as the proof is
identical to that of Lemma 1.15.

Now that we have these results about divisibility, we can prove the relation between F and its
subfields.

Theorem 1.16. Let F be a finite field of dimension n over Z/pZ. Then the subfields of F have
an injection with the divisors d of n.

Proof. Let E be a field of dimension d over the field Z/pZ. Furthermore, let the finite field F
have dimension n such that E is a subfield of F. In this proof we wish to show that d|n.

To begin, notice that by Proposition 1.13, we know that E must have an order of a power of
a prime, namely pd, since the dimension of E is d. We can verify this by counting all possible
linear combinations with respect to some basis, just as in the proof of Proposition 1.13. Since
the subfield E has order pd, its multiplicative group E∗ therefore must have order pd − 1. By the
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definition of the multiplicative group, exactly pd − 1 elements satisfy the polynomial equation

xp
d−1 − 1 = 0 where x is some arbitrary variable. Now, considering the multiplicative group

F∗, we can see that it similarly has exactly pn − 1 elements satisfying xp
n−1 − 1 = 0. Therefore

xp
d−1 − 1|xpn−1 − 1. By Lemma 1.15, we know that this implies pd − 1|pn − 1, and furthermore,

by Remark 4, this implies that d|n.
Now that we have shown that d|n, we must prove that there is an injection between the sub-

fields of F and the divisors of n. In order for an injection to exist, there must be a correspondence
such that if f(x) = f(y) for x, y ∈ E an arbitrary subfield of F, then x = y for f a function from
E of F to the divisors of n. We show this relationship in the following. To begin, suppose that

d|n again, as we will use this fact. Now let E = {α ∈ F|αpd

= α}. By constructing the subfield
E in this way, we are constructing all subfields such that all elements α in the finite field E are
also in F, just as we observed in Corollary 1.2 with the requirement that α ∈ F be in E if and

only if α satisfies the equation αpd

= α. In order to ensure that this construction is valid, we
must prove that E is indeed a field. In other words, the following properties must be true for any
α, β ∈ E:

(1) (α+ β)p
d

= αpd

+ βpd

= α+ β,

(2) (αβ)p
d

= αpd

βpd

= αβ,

(3) (α−1)p
d

= (αpd

)−1 = α−1 for α ̸= 0.

Property (1) follows immediately from Proposition 1.14 since E also has characteristic p, and
then by our initial construction of elements in E. Properties (2) and (3) are trivial as they are
inherent properties of F with the exception of the construction of E.

We now determine the order of E. By the very construction of E, we know that E is the set

of solutions to the polynomial equation xp
d − x = 0. By Remark 4, since d|n, we know that

pd−1|pn−1, and similarly by Lemma 1.15, we must also have xp
d−1−1|xpn−1−1. Consequently

xp
d − x|xpn − x. Since E comprises the solutions to xp

d − x = 0, we thus have that xp
d − x is

exactly the f(x) described by Corollary 1.4. Furthermore, the order of E is exactly the roots

of xp
d − x, so the order of E is pd. Therefore E must have dimension d over Z/pZ by applying

Proposition 1.13.
To finish the proof, we must show that each divisor d of n corresponds to a unique subfield of

F. To do this, let E′ be another subfield of F of dimension d over Z/pZ. Then by our previous

workings, every element of E′ must satisfy xp
d − x = 0, and these are the elements that do.

However, we constructed E in the same way, so the solutions to xp
d − x = 0 must coincide, i.e.

E = E′. ■

These results establish some basic properties of finite fields. We are now concerned with whether
such a finite field can exist.

1.4. The Existence of Finite Fields. Now that we have shown the construction and some
properties of finite fields, we may ask another question: given some number pn where n ∈ Z+,
does there exist some finite field with exactly pn elements? This is largely what we will investigate
here, summarized in the following theorem.

Theorem 1.17. Let n ≥ 1 be an integer and let p be prime. Then there must exist a finite field
with exactly pn elements.

We first need to prove some ring-theoretic facts, and then we will return to proving results for the
theorem. We stated that k[x] was a Euclidean domain for some arbitrary field k. By Theorem
0.1, k[x] is a PID. We say that some polynomial p(x) ∈ k[x] is irreducible if some polynomial
q(x) divides p(x), then q(x) must either be a constant multiple of p(x) or is a constant. In this
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way, irreducible polynomials are analogous to prime numbers in Z. We now need to prove the
following results.

Lemma 1.18. If A is an ideal of a ring R and contains a unit (1), then A = R.

Proof. We prove this by double inclusion. Since A is an ideal of R, by definition it is true that
A ⊆ R. We need to show that R ⊆ A. Let a ∈ A and r ∈ R. Since A is an ideal, we know
that ar = ra ∈ R for all r ∈ R. Since A contains 1, it must be true that 1r = r1 ∈ R for all
r ∈ R, namely that r ∈ A for all r ∈ R, which means that R ⊆ A. Therefore R = A, and we are
done. ■

Proposition 1.19. Let R be a commutative ring with unity and let A be an ideal of R. Then
the quotient ring R/A is a field if and only if A is maximal.

Proof. We begin by proving the forward direction. Let the quotient ring R/A be a field. Let B
be an ideal of R such that A ⊆ B. Furthermore, consider some b ∈ B but b ̸∈ A. Then b + A
is a nonzero element of the field R/A, and by the definition of a field, there must exist another
element c + A such that (b + A)(c + A) = 1 + A, or the multiplicative identity of R/A. Since
b ∈ B, it must be true by the definition of an ideal that any multiple bc ∈ B. We then have
1 +A = (b+A)(c+A) = bc+A. Therefore 1− bc ∈ A ⊆ B, so 1− bc+ bc = 1 ∈ B. By Lemma
1.18, we have that A is a maximal ideal.

We now prove the backward direction. Suppose that A is a maximal ideal and there exists some
b ∈ R but b ̸∈ A. To ensure that the quotient ring R/A is a field, we need only show that b+A
has a multiplicative inverse because the other properties of a field are trivial. Consider the set
B = {br+a|r ∈ R, a ∈ A}. We can show that B is an ideal of R as follows. First, to prove the first
condition for B to be an ideal, consider distinct r, a ∈ R such that we have two elements br1+a1
and br2+a2. Then we can see br1+a1+br2+a2 = b(r1+r2)+(a1+a2) ∈ B by the construction of
B. Next, consider some element r′ ∈ R. Then (br+ a)r′ = brr′+ ar′ = b(rr′)+ r′a ∈ B again by
the construction of B. Therefore B is an ideal of R. Since A was assumed to be maximal, in the
construction of B as an ideal of R we then have that B = R. Then the unit 1 is an element of B.
Let 1 = bc+a′ for some a′ ∈ A. Then we may write 1+A = bc+a′+A = bc+A = (b+A)(c+A),
so we have shown that b+A has a multiplicative inverse, namely c+A. ■

This leads us to the following result about the existence of polynomials with roots in a field.
Recall that an irreducible polynomial in k[x] for some arbitrary field k is equivalent to the notion
of a prime in Z.

Proposition 1.20. Let k be an arbitrary field, and also let f(x) ∈ k[x] be an irreducible poly-
nomial. There exists some field K containing k and an element α ∈ K such that α is a root of
f(x), or f(α) = 0.

Proof. We showed above that k[x] is a PID. Since f(x) is an irreducible polynomial, the ideal
given by (f(x)) generated by f(x) is a maximal and principal ideal (while also being a proper
ideal), meaning that it is one of the largest ideals of k[x]. By Proposition 1.19, the quotient
ring k[x]/(f(x)) is a field since (f(x)) is a maximal ideal. Let K ′ = k[x]/(f(x)). This field runs
through all a(x) ∈ k[x] and combines each a(x) with the entire ideal (f(x)), thereby generating
the group of cosets {a(x) + (f(x))|a(x) ∈ k[x]}. Let ϕ be the homomorphism that maps k[x]
to K ′ by mapping each element of k[x] to its respective coset modulo (f(x)). For example, if
a1(x) ∈ k[x] then ϕ would take a1(x) to its unique coset in the group of cosets. Now consider
the following diagram.
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k[x] K ′

k ϕ(k)

ϕ

ϕ

Figure 2. Illustration of the homomorphism ϕ over two analogues

In this diagram, we naturally have the mapping from k[x] to K ′ described before. However, to
simplify the proof, we are also considering the mapping via ϕ that similarly maps elements from
the previously defined field k to its cosets, defined as ϕ(k) = {a + (f(x))|a ∈ k}. It is obvious
that k is a subfield of k[x], and it is also clear that since for all a ∈ k it is also true that all
a(x) ∈ k[x] with coefficients a, ϕ(k) is a subfield of K ′.

We claim that ϕ(k) is isomorphic to k. To prove this, we need to show that the mapping via
ϕ is injective and that it preserves the operation. It is clear that the operation is preserved due
to the fact that we are transitioning between k and the group of cosets with respect to the ideal
(f(x)). We need only show that the map is injective. Consider some a ∈ k. If ϕ(a) = 0, then
a ∈ (f(x)) because this means that for all a, it is true that a+ (f(x)) = 0, or that a = −(f(x)),
namely that a ∈ (f(x)). Suppose that a ̸= 0. Therefore a must be a unit and cannot be an
element of (f(x)) as that would contradict the construction of the ideal. Therefore a = 0. Thus,
if ϕ(a) = 0, then a = 0, satisfying the condition for ϕ to be an injection.

Since ϕ is an isomorphism attached to k, we can identify k with ϕ(k) instead, meaning that
we are now considering K ′ to be an extension of k using the isomorphism via ϕ. In other words,
K ′ contains a subfield, namely the aforementioned ϕ(k), that is isomorphic to k. Therefore we
can relabel K ′ as K containing k, as this is the field that we desired to construct.

To complete the proof, we wish to bring this to context in polynomials. Let α be the coset of x
in K, namely the coset ϕ(x) = x+(f(x)) = α. Then 0 = ϕ(f(x)) = f(ϕ(x)) = f(α). The second
and third equivalence can be seen to be true by considering a simple example. For the sake of
simplicity, we consider the monic polynomial x2 ∈ k[x]. After evaluating each composition, we
see that ϕ(f(x)) = f(ϕ(x)) = x2 + (x4). The equivalence can be generalized by considering the
general form of a polynomial a(x) ∈ k[x] with deg(a(x)) = n and evaluating each composition
accordingly.

Therefore α is a root of f(x) in K. ■

In the following, we denote this field K exactly as k(α), where k is an arbitrary field. Let k[α]
denote the ring of polynomials in α with coefficients belonging to the field k. We have the
following. The α described below is exactly the roots of f(x).

Proposition 1.21. The elements 1, α, α2, . . . , αn−1 form a vector space basis for the finite-
dimensional vector space k(α) over k, where k is the same arbitrary field and n is the degree of
f(x) described in the previous proposition.

We omit the proof as it lies beyond the scope of this paper.
We briefly introduced field extensions and the degree of a field extension in the preliminary

section. Proposition 1.21 shows that if we wish to find a field extension [k(α) : k] = n of degree
n, it is sufficient to construct an irreducible polynomial f(x) ∈ k[x] with deg(f) = n. In other
words, we need only produce such a polynomial to show that a finite field with prime power order
exists.
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As we proceed, we will prove a powerful result, due to Gauss, that there exists an irreducible
polynomial of every degree in the polynomial ring obtained by adjoining the finite field Z/pZ = Fp

with x. This polynomial ring can be denoted with Z/pZ[x], but we will use the notation Fp[x]
instead. First, notice that in Fp[x] there are finitely many polynomials of any degree, ranging
from 0 to p − 1. This is obvious because there are a finite number of combinations of elements
in Fp that can form a polynomial.

In the following, we let Fd(x) denote the product of all monic irreducible polynomials in Fp[x].

The following result ultimately states that the polynomial xp
n −x can be factored into a product

of monic irreducible polynomials with respect to degrees that are divisors of n.

Proposition 1.22.

xp
n

− x =
∏
d|n

Fd(x).

Proof. First, we must prove that the product Fd(x) contains only unique monic irreducible poly-
nomials. We do this by supposing that if some arbitrary monic irreducible f(x) divides xp

n − x,
then f(x)2 cannot divide xp

n − x. We show this as follows. Suppose f(x)2 does indeed divide
xp

n − x. Then there must exist another monic irreducible g(x) such that xp
n − x = f(x)2g(x).

Differentiating each side with respect to x, we obtain

pnxp
n−1 − 1 = 2f(x)f ′(x)g(x) + f(x)2g′(x).

Since Fp[x] has characteristic p, we set p = 0. Therefore

−1 = 2f(x)f ′(x)g(x) + f(x)2g′(x) = f(x)[2f ′(x) + f(x)g′(x)].

This shows that f(x)|1, which, when f(x) is a monic irreducible, is impossible. Therefore f(x)2 ∤
xp

n − x.
We now only need to show that if f(x) is a monic irreducible polynomial with deg(f) = d,

then it divides xp
n − x if and only d|n. Let K = Z/pZ(α) be the field mentioned earlier, where

α is a root of f(x) as described in Proposition 1.20. Since deg(f) = d, we know that K has

order pd by Proposition 1.13. Therefore all elements of K are roots of xp
d − x, i.e. satisfy the

polynomial equation xp
d − x = 0.

We first prove the forward direction. Assume, WLOG, that f(x)|xpn − x, or that there exists
another monic irreducible g(x) ∈ Fp[x] that divides x

pn −x. Then we need to show that αpn

= α

for some arbitrary root α ∈ K. Suppose that α1 = a1α
d−1
1 + a2α

d−2
1 + · · ·+ ad−1α1 + ad is some

arbitrary element of K. Then, plugging into the equivalence αpn

= α for α, by Proposition 1.14,

(a1α
d−1
1 + a2α

d−2
1 + · · ·+ ad−1α1 + ad)

pn

= a1(α
pn

1 )d−1 + a2(α
pn

1 )d−2 + · · · ad−1(α
pn

1 ) + ad

= a1α
d−1
1 + a2α

d−2
1 + · · ·+ ad−1α1 + ad.

Therefore every element of K satisfies the polynomial equation xp
n −x = 0. By the construction

of K, its elements satisfy the polynomial equation xp
d − x = 0, so it must also be true that

xp
d − x|xpn − x. By Lemma 1.15, this implies that d|n, thus proving the forward direction.
We now proof the backward direction. Assume that d|n. We again have that an arbitrary

root α ∈ K satisfies αpd

= α. Since f(x) is the monic irreducible with α as a root, we have

f(x)|xpd − x. By Lemma 1.15 again, since d|n, we have xp
d − x|xpn − x, and by transitivity

f(x)|xpn − x, thus proving the proposition. ■

Now that we have proven that such a factorization of xp
n −x exists, we want to prove something

about the number of monic irreducibles of a given degree in Fp[x]. We let Nd denote the number
of monic irreducibles of degree d. We have the following.
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Corollary 1.23.

pn =
∑
d|n

dNd.

Proof. We equate the degrees of the LHS and RHS of Proposition 1.22. Since the degree of the
RHS is the sum of the number of monic irreducibles of degree d multiplied by each divisor of n,
the result follows. ■

This gives us the following due to Möbius Inversion.

Corollary 1.24.

Nn =
1

n

∑
d|n

µ

(
n

d

)
pd.

Proof. We use Theorem 0.11. Let the arithmetic function f(n) = nNn and let its summatory
function be F (n) = pn. By the inversion formula, we can write this as

nNn =
∑
d|n

µ

(
n

d

)
pd

Nn =
1

n

∑
d|n

µ

(
n

d

)
pd.

■

This gives us the following due to Gauss.

Proposition 1.25. For each integer n ≥ 1, there exists an irreducible polynomial of degree n in
Fp[x].

Proof. Expanding the sum on the RHS of Corollary 1.24 (and excluding the intermediate terms
due to the fact that the divisors are arbitrary for an arbitrary non-prime n), we obtain

Nn =
1

n
(pn − · · ·+ pµ(n)).

Notice that the expression (pn−· · ·+pµ(n)) is never 0 since the first term is pn and all remaining
terms are a prime factor of either 1 or −1 as given in the definition of the Möbius function. This
implies that with respect to the degree n, there exists at least 1 irreducible with that degree. ■

Since we have proven that there is an irreducible of every degree, we have shown that there exists
a finite field with pn elements, thereby proving Theorem 1.17.

We have only provided a brief overview of the algebra and number theory required for the
study of finite fields, but existing research and current research on finite fields is highly relevant
to many areas of ongoing mathematics research. The study of finite fields is also interesting in
its own right. In the next section we give a proof of quadratic reciprocity using finite fields.

1.5. Another Proof of the Law of Quadratic Reciprocity. The following proof of quadratic
reciprocity is an expanded version of a proof of quadratic reciprocity using quadratic Gauss sums
due to Hausner published in 1961; see [Hau61]. While this proof relies heavily on quadratic Gauss
sums, the fundamental argument of the proof we present relies largely on the existence of finite
fields of prime power order to define a modified quadratic Gauss sum, and we take full advantage
of properties of finite fields. The proof is as follows.
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Proof of Theorem 0.6 using finite fields. Consider distinct odd primes p and q. Obviously, we
have gcd(p, q) = 1. Therefore, there exists some integer n such that qn ≡ 1 (mod p). For
example, n− 1 might satisfy this congruence, which is a special case of Corollary 1.11. Now let
F be some finite field of dimension n over Z/qZ (recall from earlier that we are able to do this as
we are treating F as a vector space for which Z/qZ is a scalar field). It is well-known that since
q is an odd prime, Z/qZ is a field. Therefore the multiplicative group F∗ is cyclic and has order
|F| − 1 = qn − 1. Since F∗ is cyclic, it must have a generator. Let γ be one such generator, and
let λ = γ(q

n−1)/p. In other words, λ has order p, since p is the least integer such that λp = 1 by
Corollary 1.11.

We now define an analogue to the quadratic Gauss sum. Let

τa =

p−1∑
t=0,a∈Z

(
t

p

)
λat.

Similar to quadratic Gauss sums, we will denote the case when a = 1 as simply τ . Like the proof
of quadratic reciprocity using quadratic Gauss sums in section 4.4 of [CR22], we will need two
identities. Namely,

(1)

τa =

(
a

p

)
τ,

(2)

τ2 = (−1)
p−1
2 p.

In (2), we let p be the coset of p in Z/qZ. We first prove (1). Consider the case where a ≡ 0

(mod p). This can clearly be shown to be true since
∑p−1

t=0

(
t
p

)
· 1 = 0. The second case is

when a ̸≡ 0 (mod p). We follow the proof procedure used for Proposition 0.8, and ultimately we
can prove the result by expanding the RHS of (1) and proceeding with the same approach as
in [CR22]. To prove (2) we follow the proof procedure for Proposition 0.9. We leave the details
of the proof to the reader, which can also be found in [CR22]. The proof involves evaluating the
particular sum

p−1∑
a=0

τaτ−a

in two different ways.
Notice that in (2), p denotes the coset of p in Z/qZ. In other words, it is comprised of all

elements p + qZ. Note that if some number is a square modulo q, then that is equivalent to
stating that the coset consists of square elements. As with the proof of quadratic reciprocity
using quadratic Gauss sums, we denote p∗ = (−1)(p−1)/2p. Then we can rewrite (2) as τ2 =

(−1)(p−1)/2p = p∗. Therefore, the coset p∗ is a square modulo q, i.e. p∗ is a quadratic residue

modulo q, so (p
∗

q ) = 1. Note that this is satisfied if and only if τ ∈ Z/qZ. By Corollary 1.2, this

biconditional statement is true if and only if

(1) τ q = τ.

Notice further that we are able to use Corollary 1.2 because obviously Z/qZ ⊂ F. If we evaluate
τ q, since all intermediate terms reduce to 0 modulo q,

τ q =

( ∑
t∈Fp

(
t

p

)
λt
)q

=
∑
t∈Fp

(
t

p

)
λqt = τq.
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Applying (1), we can see that this is the same as τq = ( qp )τ . Clearly, the only case where τq = τ is

when ( qp ) = 1. If we work our way back to the statement of this biconditional, we have (p
∗

q ) = 1

if and only if ( qp ) = 1, i.e. (
p∗

q

)
=

(
q

p

)
.

As with the standard proof of quadratic reciprocity using quadratic Gauss sums, by Theorem
0.7, we can write this equivalence as(

−1

q

) p−1
2
(
p

q

)
=

(
q

p

)
(
p

q

)
(−1)

p−1
2 · q−1

2 =

(
q

p

)
,

which is equivalent to the statement of Theorem 0.6. ■

Many proofs of quadratic reciprocity using Gauss sums exist, and this is one such proof that
utilizes few facts from algebraic number theory. In the proof given by Hausner, finite fields are
referred to instead as Galois fields and are denoted as GF (q) where q denotes order. For our
purposes, as proven in Proposition 1.13, we are dealing primarily with GF (pk) for k ∈ Z+. Many
similar proofs of quadratic reciprocity published during this period utilize similar notation.

2. Multiplicative Characters

In this section we study multiplicative characters. The main motivation for studying multiplica-
tive characters is to generalize quadratic residue symbols - which we referred to as Legendre
symbols - to higher degree residue symbols. While this section provides a general overview of
nth degree residue symbols, the case when n = 3 will be the primary consideration of this paper.

2.1. Definitions and Some Basic Results. One of the most elementary examples of a mul-
tiplicative character is the Legendre symbol (a/p), as it can be thought of as a function of the
coset of a modulo p a prime. We define a multiplicative character as follows, where we denote
the integers modulo p given as Z/pZ by Fp for the sake of simplicity.

Definition 17 (Multiplicative Character). We define a multiplicative character on a field Fp

with p elements as some mapping χ from the multiplicative group F∗
p to the nonzero complex

numbers that satisfies the property that for all a, b ∈ F∗
p,

χ(ab) = χ(a)χ(b).

Once we are more familiar with the basic definitions of multiplicative characters, we will refer to
them as “characters” instead. One concrete notion of the multiplicative character is the trivial
multiplicative character, which naturally has properties that map every element of F∗

p to the
multiplicative identity; namely, for a mapping ε, we have ε(a) = 1 for all a ∈ F∗

p. To study
multiplicative characters in more depth, it is possible to consider the additive identity in the
definition of the trivial and nontrivial multiplicative characters. Namely, if we let some character
χ ̸= ε, then we can define χ(0) = 0, and ε(0) = 1. We now prove the following results about
multiplicative characters.

Proposition 2.1. Let χ be some multiplicative character and a ∈ F∗
p. Then

(1) χ(1) = 1,
(2) χ(a) is a (p− 1)st root of unity,

(3) χ(a−1) = (χ(a))−1 = χ(a) (where a bar denotes conjugation).
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Proof. To prove (1), we have from our definition of χ that χ(1) = χ(1 · 1) = χ(1)χ(1). Since χ
is a map to nonzero complex numbers, the only value for χ(1) that satisfies this relation is the
complex number 1, so χ(1) = 1.

For (2), some complex number a is a (p− 1)st root of unity if ap−1 = 1. Thus, following from
(1), we have 1 = χ(1) = χ(ap−1) = (χ(a))p−1. Therefore χ(a) is a (p− 1)st root of unity.

Finally, for (3), following again from the definition of χ, we have 1 = χ(1) = χ(a−1a) =
χ(a−1)χ(a). Therefore χ(a−1) = χ(a)−1, and also, since χ(a) is a (p − 1)st root of unity,
meaning that χ(a) evaluates to 1, its modulus must be 1. From the fact that xx = 1 for some

x ∈ C, we have that χ(a)−1 = χ(a). ■

Many properties of the Legendre symbol can offer good intuition for many of the following
results that we develop regarding multiplicative characters. Said properties were developed more
precisely in the preliminary section of [CR22].

Proposition 2.2. Let χ be a multiplicative character. If χ ̸= ε, the trivial multiplicative char-
acter, then

∑
t∈Fp

χ(t) = 0. Otherwise, the sum is p.

Proof. The last assertion is as follows. Since t runs through all elements of Fp, we must have∑
t∈Fp

χ(t) =
∑
t∈Fp

ε(t) = p.

To prove the first assertion, we assume otherwise. Let there exist some a ∈ F∗
p such that χ(a) ̸= 1,

or χ does not map a to 1, hence χ nontrivial. Let the desired sum be T =
∑

t∈Fp
χ(t). Then we

may write

χ(a)T =
∑
t∈Fp

χ(a)χ(t) =
∑
t∈Fp

χ(at).

This equates to T itself as at runs through the exact same number of elements from Fp as t does,
so χ(a)T = T . Then T (χ(a) − 1) = 0. We stated that necessarily χ(a) ̸= 1, so T = 0, and we
are finished. ■

Remark 5. An important fact about characters is that they form a group. Necessarily, for two
nontrivial characters χ and λ, the function χλ is the map that takes some a ∈ F∗

p to χ(a)λ(a). In
order for χλ to be a character it must be true that the map of the composition is a homomorphism,
namely that for all x, y ∈ F∗

p, we have χλ(xy) = χλ(x)χλ(y). Another property of the group of

characters is that if χ is some character, then χ−1 is the map that takes some a ∈ F∗ to χ(a)−1,
serving as a sort of reverse image mapping. This can be shown to be a character by similarly
proving that it is a homomorphism. Finally, it is clear that the identity element of the group is
the trivial character ε.

The fact that characters form a group is fundamental to later results. We need the following
result.

Theorem 2.3. The multiplicative group of Z/pZ, namely in our notation, F∗
p, is cyclic.

The proof is nearly identical to the proof of Theorem 1.6, but simpler due to the fact that we
are dealing with the integers modulo p. We now show that the group of characters also forms a
cyclic group of order p− 1.

Theorem 2.4. The group of characters form a cyclic group of order p − 1. Furthermore, for
some a ∈ F∗

p with a ̸= 1, then there exists a character χ such that χ(a) ̸= 1.

Proof. This theorem asserts that the characters form a cyclic group, so just as before, it is
necessary to show that there exists a generator that, when raised to the (p − 1)st power, yields
the identity, namely ε. We first show that the order of the group is p − 1. By Theorem 2.3, F∗

p
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is cyclic. Let some g ∈ F∗
p be a generator. Then every a ∈ F∗

p can be represented as a power of

g. Then a = gl for some exponent l. If χ is a character on F∗
p, then it is true that χ(a) = χ(g)l.

What this shows is that the the character χ is restricted explicitly by the value of χ(g), the
character acting on the generator. By Proposition 2.1, we know that χ(g) is a (p − 1)st root
of unity. Furthermore, by the definition of prime roots of unity, there are exactly p − 1 roots.
Therefore, the character group has order at most p− 1.

Now we proceed to show the existence of a generator on the group of characters to show that

it is cyclic. Define some function λ as λ(gk) = e2πi(
k

p−1 ). The function λ is well-defined; this can
be verified by considering its properties as a function. Furthermore, λ is also a character because
it possesses the property that

λ(gk) = λ(g) · · ·λ(g)︸ ︷︷ ︸
k

= e
2πi
p−1 · · · e

2πi
p−1︸ ︷︷ ︸

k

=

(
e

2πi
p−1

)k

= e
2kπi
p−1 ,

thus satisfying the multiplicative property of the character. If we want to show that the group
is cyclic, we need to show that p − 1 is the smallest integer n such that λn = ε. If λn = ε,
then we must have λn(g) = ε(g) = 1 for some g. Alternatively, we also have λn(g) = (λ(g))n =

(e
2πi
p−1 )n = e

2nπi
p−1 . For this to be equivalent to 1, we must have that p− 1|n. For some a, we have

λp−1(a) = λ(a)p−1 = λ(ap−1) = 1, which is only possible if λp−1 = ε. Repeating this process,
we can show that ε, λ, . . . , λp−2 are distinct, and thus combined with the the fact that the group
has a maximum order of p− 1, we have that the group of characters is cyclic with generator λ.

Finally, to prove the final part, let there be some a ∈ F∗
p with a ̸= 1. Then a can be

represented as a power of the generator g, so a = gl, with p− 1|l. Then applying λ to a we have

λ(a) = λ(gl) = λ(g)l = (e
2πi
p−1 )l = λ(g)l = e

2lπi
p−1 . Since p− 1 ∤ l, it must be true that λ(a) ̸= 1, so

we are done. ■

As an analogue to Proposition 2.2 and as a result of Theorem 2.4, we can also consider summing
over all characters and evaluating each one at a fixed variable from F∗

p. This gives us the following
proposition.

Proposition 2.5. Let a ∈ F∗
p with a ̸= 1. Then

∑
χ χ(a) = 0 over all characters χ.

Proof. Let us denote the sum above with S =
∑

χ χ(a). Since we assumed that a ̸= 1, Theorem

2.4 asserts that there must exist some other character λ such that λ(a) ̸= 1. Then we have

λ(a)S = λ(a)
∑
χ

χ(a) =
∑
χ

λ(a)χ(a) =
∑
χ

λχ(a)

by our discussion in Remark 5. Note that λχ runs over an equivalent number of characters as χ
from the group of characters, so we can assert that

∑
χ λχ(a) = S as we defined earlier. Therefore

λ(a)S = S, so (λ(a)− 1)S = 0, which since λ(a) ̸= 1, is only possible if S = 0. ■

2.2. Gauss Sums. As we have mentioned before, the multiplicative character generalizes the
notion of the Legendre symbol. Similarly, it also generalizes the notion of a quadratic Gauss sum
to the notion of a general Gauss sum. We define the Gauss sum as follows.

Definition 18 (Gauss Sum). Let χ be some character on Fp and let a ∈ Fp. Let

ga(χ) =
∑
t∈Fp

χ(t)ζatp ,

where ζp = e2iπ/p is a pth root of unity. We say that ga(χ) is a Gauss sum on Fp belonging to
the character χ.
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With this definition, we can see that a each Gauss sum is over a unique character, so we are
dealing with sums of a singular character evaluated at all values of Fp equipped with an additional
parametrization of t. We examine some basic properties of the Gauss sum.

Lemma 2.6. The following are true.

(1) If a ̸= 0 and χ ̸= ε, then ga(χ) = χ(a)g1(χ).
(2) If a ̸= 0 and χ = ε then ga(ε) = 0.
(3) If a = 0 and χ ̸= ε, then ga(χ) = 0.
(4) If a = 0 and χ = ε, then ga(χ) = p.

Proof. Let us begin by proving (1). Let a ̸= 0 and χ ̸= ε. Then

χ(a)ga(χ) = χ(a)
∑
t∈Fp

χ(t)ζatp =
∑
t∈Fp

χ(a)χ(t)ζatp =
∑
t∈Fp

χ(at)ζatp = g1(χ).

Then χ(a)ga(χ) = g1(χ), so ga = g1(χ)χ(a)
−1 = χ(a−1)g1(χ) = χ(a)g1(χ).

We now prove (2). Let a ̸= 0 but χ = ε. Since ε maps all a ∈ Fp to 1, we have

ga(ε) =
∑
t∈Fp

ε(t)ζatp =
∑
t∈Fp

ζatp .

Recall that Fp is the integers modulo p, so t runs through all residue class representatives.

Namely, it goes from t = 0 to p− 1. Therefore
∑

t∈Fp
ζatp =

∑p−1
t=0 ζ

at
p . Since a ̸= 0, we consider

two cases: (a) when a ≡ 0 (mod p) and (b) when a ̸≡ 0 (mod p). Considering (a), if a ≡ 0
(mod p), then for some k ∈ Z, we have ζap = (e2iπ/p)kp = e2kiπ = 1 for all values of k. Then∑p−1

t=0 (ζ
a
p )

t = 1 + · · ·+ 1 = p. We now consider (b). If a ̸≡ 0 (mod p), then we can evaluate the
sum as a finite geometric series. Then

p−1∑
t=0

ζatp =

p∑
t=1

ζatp =
1(1− ζapp )

1− ζap
=
ζapp − 1

ζap − 1
.

We know that ζapp = 1 for all p prime, so
ζap
p −1

ζa
p−1 = 0/(ζap − 1) = 0.

To prove (3), let a = 0 and χ ̸= ε. Then g0(χ) =
∑

t∈Fp
χ(t) = 0 by Proposition 2.2.

To prove (4), let both a = 0 and χ = ε. Then g0(ε) =
∑

t∈Fp
ε(t) = 1 + · · ·+ 1︸ ︷︷ ︸

p

= p. ■

In our proof of (2), we split the evaluation of the sum into two cases with dependence on the
value of a. This result can be summarized as follows.

Lemma 2.7.
p−1∑
t=0

ζatp =

{
p, a ≡ 0 (mod p),
0, a ̸≡ 0 (mod p).

Suppose we wish to determine the absolute value of the Gauss sum if the character is nontrivial.
In prior literature it is possible to compute the value of the quadratic Gauss sum as well as its
sign. Though we do not humor the intricacies of that proof as they lie beyond the scope of the
paper, we compute the value of the general Gauss sum in Lemma 2.10. The following simple
result is useful in proving the lemma and following results.

Corollary 2.8 (Corollary to Lemma 2.7).

p−1

p−1∑
t=0

ζt(x−y)
p = δ(x, y).

Proof. The proof follows by considering each case and evaluating accordingly. ■



26 MATIAS CARL RELYEA

2.3. Jacobi Sums. The theory of Jacobi sums extends far beyond what we will discuss here,
specifically in regard to solving Diophantine equations, but basic properties of the Jacobi sum
will be useful later. We define a Jacobi sum as follows.

Definition 19 (Jacobi Sum). Let χ and λ be two characters on Fp. Then we define a Jacobi
sum over χ and λ to be

J(χ, λ) =
∑

a + b = 1
a, b ∈ Fp

χ(a)λ(b),

where a, b ∈ Fp.

The following theorem relates Jacobi sums to Gauss sums.

Theorem 2.9. Let χ and λ be characters such that neither is the trivial character ε. Then

(1) J(ε, ε) = p,
(2) J(ε, χ) = 0,
(3) J(χ, χ−1) = −χ(−1),
(4) If the composition χλ ̸= ε, then

J(χ, λ) =
g(χ)g(λ)

g(χλ)
.

Proof. Note that x, y ∈ Fp in the following.
(1) follows from the fact that for all α we have ε(α) = 1, so that J(ε, ε) =

∑
a+b=1 χ(a)λ(b) =∑

a+b=1 1 = p since Fp has order p.
For (2), we have J(ε, χ) =

∑
a+b=1 ε(a)χ(b) =

∑
a+b=1 χ(b), which equates to 0 as an extension

of the result in Proposition 2.2.
For (3), we have

J(χ, χ−1) =
∑

a+b=1

χ(a)χ−1(b) =
∑

a + b = 1,
b ̸= 0

χ(ab−1) =
∑
a̸=1

χ

(
a

1− a

)
.

Let q =
∑

a̸=1 χ(
a

1−a ). With the constraint that c ̸= 1, we can express a = c
1+c . As the value of

a runs over the entire field Fp, with the exception that a ̸= 1, simultaneously c also varies over
Fp, with the exception that c ̸= 1. Therefore, by Proposition 2.1 we can take the sum

J(χ, χ−1) =
∑
c ̸=−1

χ(c) =
∑
c

χ(c)−
∑
c=−1

χ(c) = −χ(−1).

For (4), we have

g(χλ) = g(χ)g(λ) =

(∑
x

χ(x)ζx
)(∑

y

λ(x)ζy
)

=
∑
x,y

χ(x)λ(y)ζx+y

=
∑
t∈Fp

( ∑
x+y=t

χ(x)λ(y)

)
ζt.

We consider two cases for the value of t. If t = 0, then, choosing to sum over x and by the fact
that the composition χλ ̸= ε, clearly∑

x+y=0

χ(x)λ(y) =
∑
x

χ(x)λ(−x) =
∑
x

λ(−1)χ(x)λ(x) = λ(−1)
∑
x

χλ(x) = 0
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by Proposition 2.2. In the case that t ̸= 0, define two new elements x′ and y′ as x = tx′ and
y = ty′. Then, if we have x+ y = t, then substituting we have tx′ + ty′ = t, so that x′ + y′ = 1.
Therefore∑

x+y=t

χ(x)λ(y) =
∑

x′+y′=1

χ(tx′)λ(ty′) =
∑

x′+y′=1

χ(t)λ(t)χ(x′)λ(y′) =
∑

x′+y′=1

χλ(t)χ(x′)λ(y′)

= χλ(t)J(χ, λ).

If we substitute this into our evaluation of g(χ)g(λ), then we have

g(χ)g(λ) =
∑
t∈Fp

χλ(t)J(χ, λ)ζt = J(χ, λ)
∑
t∈Fp

χλ(t)ζt = J(χ, λ)g(χλ).

Setting this equal to g(χ)g(λ) and dividing by g(χλ), we have

J(χ, λ) =
g(χ)g(λ)

g(χλ)
.

■

Before we can proceed, we require several technical lemmas. We have the following.

Lemma 2.10. If χ ̸= ε is a nontrivial character, then |g(χ)|2 = p.

Proof. The proof is very similar to proofs regarding the quadratic Gauss sum discussed in [CR22].
We want to evaluate the sum ∑

a∈Fp

ga(χ)ga(χ)

in two different ways. We first want to evaluate the argument of the sum. Assume that a ̸= 0.
By (1) of Lemma 2.6, we can write

ga(χ) = χ(a−1)g(χ) = χ(a)g(χ).

Taking the conjugate, we also have ga(χ) = χ(a−1)g(χ). Multiplying,

χ(a)g(χ)χ(a−1)g(χ) = g(χ)g(χ) = |g(χ)|2.
Since

∑
a∈Fp

sums over all elements of the finite field Fp except a = 0, we consider this quantity

p− 1 times, so ∑
a∈Fp

ga(χ)ga(χ) = (p− 1)|g(χ)|2.

Similarly, considering two parameters x and y and writing the argument of the sum as a double
sum, we have

ga(χ)ga(χ) =
∑
x∈Fp

∑
y∈Fp

χ(x)χ(y)ζax−ay.

Summing over all elements of Fp and applying Corollary 2.8 we have∑
a∈Fp

∑
x∈Fp

∑
y∈Fp

χ(x)χ(y)ζax−ay = pp−1
∑
a∈Fp

∑
x∈Fp

∑
y∈Fp

χ(x)χ(y)ζax−ayp

= p
∑
x∈Fp

∑
y∈Fp

χ(x)χ(y)ζax−ayδ(x, y)

where δ(x, y) denotes the Kronecker delta. If x ̸≡ y (mod p) then the double sum will equate to
0, so we consider when x ≡ y (mod p). If this is true, then the argument of the sum will run
over exactly p− 1 elements, so that

p
∑
x∈Fp

∑
y∈Fp

χ(x)χ(y)ζax−ayδ(x, y) = p(p− 1).
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Equating our two evaluations, we have

(p− 1)|g(χ)|2 = p(p− 1)

|g(χ)|2 = p,

so we are done. ■

It is important to notice that the same result holds when g(χ) is considered instead, i.e. |g(χ)|2 =
p. This is evident in the following.

Corollary 2.11.
g(χ)g(χ) = χ(−1)p.

Proof. Note first that χ(−1) = χ(−1) since both values equate to ±1. Taking the conjugate of
the equivalence given in Lemma 2.10, we have

g(χ) = χ(−1)g(χ)

g(χ) = χ(−1)g(χ)

g(χ)g(χ) = χ(−1)g(χ)g(χ) = χ(−1)|g(χ)|2 = χ(−1)p,

thereby proving the result. ■

The following result is general for characters, but will be useful when considering the relation
between Gauss sums and Jacobi sums.

Theorem 2.12. It is well known that there exist an infinite number of primes of the form p ≡ 1
(mod n) since all primes are odd. As such, let χ be a character of order n > 2. Then

g(χ)n = χ(−1)p(χ, χ)J(χ, χ2) · · · J(χ, χn−2).

Proof. We can express (4) of Theorem 2.9 as J(χ, χ)g(χ · χ) = g(χ)g(χ). This gives g(χ)2 =
J(χ, χ)g(χ2). In the n = 3 case, multiply both sides by g(χ) and we have

g(χ)3 = J(χ, χ)g(χ)g(χ2) = J(χ, χ)J(χ, χ · χ)g(χ3) = J(χ, χ)J(χ, χ2)g(χ3).

We can continue multiplying the LHS and RHS by g(χ), so eventually, we have the (n − 1)th
case, so that

g(χ)n−1 = J(χ, χ)J(χ, χ2) · · · J(χ, χn−2)J(χ, χn−1).

Notice, however, by the fact that characters form a cyclic group, that g(χ)n−1 = g(χ)ng(χ)−1 =
g(χ)−1 = g(χ). Therefore we have g(χ)g(χn−1) = g(χ)g(χ) = χ(−1)p by Corollary 2.11. Multi-
plying both sides of the equation above by g(χ), we have

g(χ)n = χ(−1)p(χ, χ)J(χ, χ2) · · · J(χ, χn−2),

so we are done. ■

What follows from this is a corollary concerning the relationship between the cubic Gauss sum
and the Jacobi sum.

Corollary 2.13. Let χ be the cubic character. Then

g(χ)3 = pJ(χ, χ).

Proof. This is a special case of Theorem 2.12. Take n = 3. Then, since −1 is clearly a cube,
namely χ(−1) = χ((−1)3) = 1, we have

g(χ)3 = χ(−1)pJ(χ, χ) = pJ(χ, χ).

■

These results will be of utmost importance later when we seek to prove cubic reciprocity.
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3. Cubic Reciprocity

Whereas quadratic reciprocity resides in Z, cubic reciprocity resides in Z[ω], the Eisenstein
integers. In order to state and then prove cubic reciprocity, it is necessary to take a step back
and examine characteristics of the ring Z[ω]. We will begin our examination by looking at the
prime elements and units of Z[ω].

3.1. Units and Primes in Z[ω]. We say that some ω is a cube root of unity, and that the set
Z[ω] contains complex number elements of the form α = a + bω for a, b ∈ Z. It is in fact true

that Z[ω] is a ring. In our case, we consider when ω = −1/2 + i
√
3/2.

We say that the norm of α, written as Nα, is the product of α and its conjugate, namely
Nα = αα = a2 − ab+ b2. We may now consider the prime elements and units of Z[ω]. Note that
this is possible explicitly because there inherently exists a notion of unique factorization in Z[ω],
and therefore we are able to consider the supposed “building blocks” of the ring. By means of
notational convention, we denote Z[ω] = D.

Proposition 3.1. Some α ∈ D is a unit of D if and only if Nα = 1. Furthermore, the units of
D are 1,−1, ω,−ω, ω2,−ω2.

Proof. We prove the backward direction first. If Nα = 1, then by the definition of the norm,
αα = 1, which implies that α must be a unit.

To prove the reverse direction, suppose that α is a unit. By the definition of the unit, this
must mean there exists some β ∈ D such that αβ = 1. Therefore NαNβ = 1. However, since
Nα and Nβ must be integers, in order for their product to be 1, they must both be 1. Therefore
Nα = 1.

We now determine the units of D. Suppose that α = a + bω ∈ D is a unit. Then by
definition of the norm we have 1 = a2 − ab+ b2. We may rewrite this as 4 = 4a2 − 4ab+ 4b2, or
4 = 4a2 − 4ab+ b2 + 3b2 so 4 = (2a− b)2 + 3b2. If we observe this Diophantine equation, we can
see that there are only two sets of possible solutions. We write them as follows.

(1) 2a− b = ±1, b = ±1,
(2) 2a− b = ±2, b = 0.

We need to solve all 6 possible pairs of equations for a and b. The first is 2a− b = 1 and b = 1.
Then a = b = 1. The second is 2a − b = −1 and b = −1. Then a = b = −1. The third is
2a − b = 1 and b = −1. Then a = 0 and b = −1. The fourth is 2a − b = −1 and b = 1. Then
a = −1 and b = 1. The fifth is 2a − b = 2 and b = 0. Then a = 1 and b = 0. The final is
2a − b = −2 and b = 0. Then a = −1 and b = 0. Plugging these into the expression for α, we
have the units 1 + ω,−1− ω,−ω, ω, 1,−1. An identity asserts that ω2 + ω+ 1 = 0, so rewriting,
we can express the first two units as −ω2 and ω2 respectively. ■

Now that we have determined the units, we begin to observe characteristics of prime elements in
Z[ω].

Remark 6. Note that primes in Z are not necessarily prime in D. For example, consider the
prime 7. We can express it as 7 = (3+ω)(2−ω) = 6−3ω+2ω−ω2 = 6−ω−ω2 = 7. Therefore,
in order to distinguish between integer primes and primes in D, we refer to primes in D as primes
and primes in Z as rational primes.

Proposition 3.2. Let π be a prime in D. Then there is some rational prime p such that Nπ = p
or p2. If Nπ = p then π is not associate to a rational prime, and if Nπ = p2 then π is associate
to a rational prime.

Proof. By the definition of the norm, we must have that Nπ = ππ = n > 1. Clearly, by the
fundamental theorem of arithmetic, n is a product of rational primes. Therefore π|p for some
rational prime p. Since π|p, there exists some γ ∈ D such that p = πγ. Then we may write
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NπNγ = Nπγ = Np = p(p) = p2. For this equality to be true we must have either Nπ = p2

with Nγ = 1 or that Nπ = Nγ = p. We consider the first case. If Nπ = p2 and Nγ = 1,
then γ must be a unit of D, so π is associate to p. In the second case, suppose that π is
associate to some other rational prime q ∈ Z, with u a unit. Then we must have π = uq. Then
Nπ = Nuq = NuNq = 1(q)(q) = q2. Clearly, a rational prime cannot be a square of another
rational prime, so π must not be associate to a rational prime. Thus we are done. ■

Proposition 3.3. If there is some π ∈ D such that Nπ = p where p is a rational prime, then π
is a prime in D.

Proof. Assume that π is not prime in D. Then we can express π as a product of primes ρ, γ ∈ D,
such that for Nρ,Nγ > 1, we have p = Nπ = Nργ = NρNγ. However, since p is itself prime in
Z, this argument is not possible. Therefore π is prime in D. ■

Now that we have shown several properties of primes and units in D, we might be interested in
classifying its primes.

Theorem 3.4. Let p and q be rational primes.

(1) If q ≡ 2 (mod 3) then q is prime in D.
(2) If p ≡ 1 (mod 3), then p = Nπ = ππ, where π is a prime in D.
(3) 3 = −ω2(1− ω)2, and 1− ω is prime in D.

Proof. We begin by proving (1). Suppose that p is not a rational prime. Then we can write
p = πγ for π, γ ∈ D and Nπ,Nγ > 1. Then taking the norm of both sides, we have Np = NπNγ
so p2 = NπNγ. Therefore we can write Nπ = p. Let π ∈ D be of the from π = a + bω. Then
we may write Nπ = a2 − ab+ b2 = p. Using the same factorization in Proposition 3.1, we have
4p = (2a−b)2+3b2. Reducing modulo 3, we have p ≡ (2a−b)2 (mod 3). If 3 ∤ p, then it must be
true that p ≡ 1 (mod 3) because 1 is the only integer such that it is a nonzero square modulo 3.
In other words, 1 is a quadratic residue modulo 3. If we again look at a2−ab+ b2 and substitute
all pairs (a, b) where a, b ∈ Z/3Z, we can see that it is impossible for a2 − ab+ b2 ≡ 2 (mod 3).
Note that no prime is congruent to 0 modulo 3. Therefore there must exist some rational prime
q ≡ 2 (mod 3) that is prime in D.

We now prove (2). Suppose that p ≡ 1 (mod 3). Using Theorem 0.6, we have(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2

(
p

3

)
(−1)

p−1
2 · 3−1

2

= (−1)
p−1
2 + p−1

2

(
p

3

)
=

(
p

3

)
=

(
1

3

)
= 1.

Therefore, −3 is a quadratic residue modulo 3, meaning that there exists some a ∈ Z such that
a2 ≡ −3 (mod 3). We may rewrite this as pb = a2 + 3 for some b ∈ Z. Factorizing, we have
that p divides pb = (a−

√
−3)(a+

√
−3) = (a+ 1 + 2ω)(a− 1− 2ω). Since D is a UFD, by the

class inclusions mentioned in Remark 2, D is also an integral domain. Therefore an analogue of
Euclid’s lemma applies, so p must divide one of the factors. Assume that p is a prime. Since
p ̸= 2, it cannot divide the first factor. Furthermore, 2/p is rational, and so it cannot divide the
second factor. Therefore p is not prime and can be expressed as p = πγ for π, γ ∈ D nonunits
(as this guarantees that one is not associate to the other). Therefore, taking the norm of both
sides, we have p2 = Nπγ = NπNγ, so that p = Nπ = ππ.

We now prove (3). Note that we can factorize x3 − 1 = (x − 1)(x − ω)(x − ω2). Therefore
since x3 − 1 = (x− 1)(x2 + x+1), we have that x2 + x+1 = (x−ω)(x−ω2). Letting x = 1, we
have 3 = (1−ω)(1−ω2) = (1−ω)(1−ω)(1+ω) = (1+ω)(1−ω)2. Recalling that 1+ω = −ω2,
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we have 3 = −ω2(1− ω)2. Taking the norm of both sides, we obtain

3(3) = N(−ω2)N(1− ω)2

9 = N(ω3)N(1− ω)2

3 = N(1− ω),

so we are done. ■

Now that we are equipped with information about prime and unitary elements of Z[ω], we are
prepared to introduce the second most important theorem in this paper.

3.2. The Residue Class Ring Z[ω]/πZ[ω] Is a Finite Field for π Prime. In this subsection,
we prove the most important connections between finite fields and reciprocity and outline why
we needed to survey finite fields in so much depth. Much like in section 4.1 of [CR22], it is useful
to think about notions of congruence in D as well. Let α, β, γ ∈ D with γ nonzero and a nonunit.
Then we say that α ≡ β (mod p) if γ|α − β. Note that this definition is very similar to the
definition of congruence in Z. Each residue class modulo γ may be combined in a quotient ring
of the form D/γD. To see how this is analogous to the conventional construction of a quotient
ring, notice that D/γD runs through moduli 0, 1, 2, . . . , γ − 1, with each residue class forming
a set of congruent numbers in D, much like how Z/nZ runs through moduli 0, 1, 2, . . . , n − 1.
We refer to such a quotient ring as a residue class ring modulo γ. We now prove an important
property of residue class rings.

Theorem 3.5. Let some π ∈ D be a prime. Then the residue class ring D/πD is a finite field
with Nπ elements.

Proof. In order to prove that D/πD is a finite field, we need to first prove that it is a field, and
then show that it has a finite number of elements; in this case, exactly Nπ. The second part of
the proof requires that we consider all possible cases in Theorem 3.4.

We begin by showing that D/πD is a field. Clearly, properties such as commutativity, tran-
sitivity, etc. natural to fields are present in D/πD. We need only show the existence of a unit
in D/πD. Let there exist some α ∈ D with the property that α ̸≡ 0 (mod π). Since D/πD is a
commutative ring, it is an integral domain. Therefore for some elements β, γ ∈ D it is possible
to write 1 = βα + γπ. Reducing both sides modulo π, we have αβ ≡ 1 (mod π). If we rewrite
this congruence as an equality, we have that [αβ] = [α][β] = 1, which is the requirement for [α]
to be a unit in D/πD. Therefore D/πD is a field.

We now prove that D/πD has Nπ elements by considering all possible cases of Theorem
3.4. We begin by supposing that q ≡ 2 (mod 3), where q ∈ Z is a rational prime. In order
to show that there are Nπ elements, we need to show that there is a complete set of coset, or
residue class, representatives that has cardinality Nπ. Therefore, we need to show that the set
{a+bω|0 ≤ a < q∧0 ≤ b < q} is a complete set of coset representatives for D/qD with cardinality
Nq = q2. Suppose that there is some µ = m + nω ∈ D for m,n ∈ Z. Then by the division
algorithm, we can express m = qs + a and n = qt + b, where s, t, a, b ∈ Z with the constraint
that a, b ∈ [0, q). By our definition of µ, it is clear that µ belongs to its own residue class modulo
q, namely µ ≡ a + bω (mod q). We want to show that every coset representative µ can be
constructed in this form, and is unique. Suppose that for 0 ≤ a, b, a′, b′ < q that a+bω ≡ a′+b′ω
(mod q). Rearranging, we have that

a− a′ + bω − b′ω ≡ 0 (mod q)

(a− a′) + (b− b′)ω ≡ 0 (mod q)

a− a′

q
+
b− b′

q
ω ∈ D.
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By the definition of elements of D, this means (a − a′)/q and (b − b′)/q are both integers, but
since they are rational it is only possible if a = a′ and b = b′, thus proving uniqueness.

Now we show that this is true when p ≡ 1 (mod 3) is a rational prime, and p = ππ = Nπ.
Much like the first part of the proof, we want to show that a set is a complete set of coset
representatives, but alternatively in the form {0, 1, 2, . . . , p− 1} with cardinality p = Nπ. Begin
by letting π = a+bω be a prime. By the definition of the norm, p = a2−ab+b2, and it is obvious
that p ∤ b. Let there exist µ = m+ nω ∈ D. Then there must exist some c ∈ Z such that cb ≡ n
(mod p). Then we have µ− cπ ≡ m+nω− c(a+ bω) ≡ m+nω−ac− bcω ≡ m−ac+(n− bc)ω ≡
m− ac (mod p). Therefore it is also true that µ ≡ m− ca (mod p) by taking both sides modulo
π. This shows that every element of D is congruent to a rational integer modulo π. Now we
need to show modulo π, these elements correspond to one of {0, 1, 2, . . . , p− 1}. Let some l ∈ Z.
Then by the division algorithm we can write l = sp + r for s, r ∈ Z and 0 ≤ r < p. Therefore
l ≡ r (mod p), and in fact l ≡ r (mod π). Since we showed earlier that every element of D is
congruent to a rational integer modulo π, this argument demonstrates that all elements of D are
congruent to exactly one of {0, 1, 2, . . . , p − 1} modulo p instead. Now we need only prove that
these coset representatives are unique. Suppose that for r, r′ ∈ Z and 0 ≤ r, r′ < p, there is a
congruence r ≡ r′ (mod π). Then r− r′ = πγ for some arbitrary γ ∈ D. Then taking the norm,
we have (r − r′)2 = Nπγ = pNγ. Then p|(r − r′)2, and so p|(r − r′). This implies that r ≡ r′

(mod p). Since we initially stated that r and r′ are least residues modulo p, they are not only
equivalent modulo p, but further satisfy r = r′, thus proving uniqueness.

The final case is when an element of D has a norm of 3. Proposition 3.3 guarantees that 1−ω
is prime in D because 3 is prime in Z. In other words, since part (3) of Theorem 3.4 asserts that
1− ω is prime in D, the residue class ring D/(1− ω)D contains exactly N(1− ω) = 3 elements.
Since π = 1 − ω, we will be proving this modulo (1 − ω). To see what these cosets look like,
we must determine what the elements of D/(1 − ω)D are. Notice that since this is a residue
class ring, we are taking the elements from the ideal (1 − ω)D and combining them with the
elements of D to form the set of coset representatives {r + (1 − ω)D|r ∈ D}. The three coset
representatives are 0, 1 and 2, so the respective cosets are 0 +D/(1− ω)D, 1+D/(1− ω)D, and
2 +D/(1− ω)D. ■

The significance of the above result is that it allows us to consider elements of the ring D/πD
for π prime in such a way to be a finite field, which is a fundamental fact when studying cubic
reciprocity considering many of the results that we derived in section 1.

3.3. Statement of Cubic Reciprocity. Now that we have formed the connection between
finite fields and the residue class ring D/πD for π prime, we can begin familiarizing ourselves
with characteristics of the finite field. SinceD/πD is a finite field with orderNπ, its multiplicative
group (D/πD)∗ has order Nπ− 1. Theorem 1.6 asserts that (D/πD)∗ must be cyclic, so with it
we have a useful analogue in D/πD to Fermat’s Little Theorem, namely

Theorem 3.6 (Analogue to Fermat’s Little Theorem in D/πD). If π is a prime and π ∤ α, then

αNπ−1 ≡ 1 (mod π).

The proof of this follows similarly to Corollary 1.11, where instead we consider the residue classes
modulo π and use the fact that (D/πD)∗ is cyclic.

In order to consider higher reciprocity, we must consider cases where Nπ ̸= 3, namely, when
Nπ > 3. Specifically, if Nπ ̸= 3, then the residue classes formed by 1, ω and ω2 would necessarily
be distinct, unlike if Nπ = 3. We show this as follows.

Suppose that Nπ ̸= 3 in all following cases. Then suppose that ω and 1 belong to the same
residue class, i.e. ω ≡ 1 (mod π). Then π|1−ω. However, we showed before that 1−ω is a prime
element of D/πD, so it must be true that π is associate to 1−ω, i.e. there exists some unit u such
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that π = u(1− ω). Taking the norm of both sides, we have Nπ = NuN(1− ω) = N(1− ω) = 3,
but we assumed that Nπ ̸= 3, so this is a contradiction. Therefore ω and 1 belong to distinct
residue classes modulo π. We can repeat this for 1 and ω2, and finally for ω and ω2. For
the first one, we assume that ω2 ≡ 1 (mod π). Then π|1 − ω2, so for some unit u, we have
π = u(1−ω2). Notice that −ω2 = −ω, so π = u(1−ω). Taking the norm of both sides, we have
Nπ = NuN(1 − ω) = N(1 − ω) = 3, but this is a contradiction, so ω2 ̸≡ 1 (mod π). The same
procedure can be done to show the distinctness of the remaining two residue classes.

Taking these three distinct residue class representatives, we have a cyclic group of order 3,
namely {1, ω, ω2}. By Theorem 0.2, this cyclic group divides the order of the group for which
it is a subgroup, namely |(D/πD)∗| = Nπ − 1. Therefore 3|Nπ − 1. Alternatively, if π = q is
some rational prime, then taking the norm of both sides, we have Nπ = q2. Then q2 ≡ 1 ≡ Nπ
(mod 3). Proposition 3.3 asserts the existence of some other prime p such that Nπ = p, so
q2 ≡ p ≡ 1 (mod 3), which is the same as 3|p− 1. This leads us to the following result.

Proposition 3.7. Let π be a prime with Nπ ̸= 3 and π ∤ α. Then there must exist a unique
integer m = 0, 1, 2 such that

α
Nπ−1

3 ≡ ωm (mod π).

Proof. Rearranging the statement of Theorem 3.6, we have αNπ−1−1 ≡ 0 (mod π), so π|αNπ−1−
1. Factoring the LHS, we have

αNπ−1 − 1 = (α
Nπ−1

3 − 1)(α
Nπ−1

3 − ω)(α
Nπ−1

3 − ω2)

so π|(αNπ−1
3 − 1)(α

Nπ−1
3 − ω)(α

Nπ−1
3 − ω2). As we discussed prior to this proof, it must be

true that 3|Nπ − 1 for each element of the cyclic group {1, ω, ω2}. If π divided more than one
factor, then the first and intermediate terms would no longer satisfy the property that 3|Nπ− 1.
Therefore, π must divide exactly one of the factors. Therefore, considering each factor, we have

π|(αNπ−1
3 − 1), π|(αNπ−1

3 −ω), and π|(αNπ−1
3 −ω2). Naturally, it follows that for distinct integer

values m running from 0 to 2, we have α
Nπ−1

3 ≡ ωm (mod π). ■

We now proceed to define the cubic residue character. Note the following.

Remark 7. While the vertical notation (a/p) is preferable for the Legendre symbol and there does
exist a vertical cubic residue symbol (α/π)3, we instead use a shorthand as we will be writing it
many times. Therefore, we denote the cubic residue character with χπ(α) to represent the cubic
character of α modulo π.

Definition 20 (Cubic residue character). Let Nπ ̸= 3. We say that the cubic residue character
of α modulo π is defined as

(1) χπ(α) = 0 if π|α,
(2) α

Nπ−1
3 ≡ χπ(α) (mod π) where

χπ(α) =

{
1 if α is a cubic residue,
ω or ω2 otherwise.

Recall that the Legendre symbol outputted solutions to the equation x2 − 1 = 0, so naturally,
the cubic residue character outputs solutions to the equation x3 − 1 = 0, roots of which are
cube roots of unity. Note that both symbols can also output 0. We first prove an important
property that the congruence of two cubic characters modulo π implies their equality, and follow
by proving some other properties of the cubic residue character.

Lemma 3.8. Let π ∈ D be a prime. Then suppose that there exist some a, b ∈ {0, 1, ω, ω2} with
the property that a ≡ b (mod π). Then a = b.
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Proof. Notice that if a ≡ b (mod π), then by the definition of congruence we can write a−b = πγ,
where γ ∈ D. For a = b, the RHS must reduce to 0 modulo π.

We begin by taking the differences of each possible pair in the set {0, 1, ω, ω2}. We obtain
−1, 1,−ω, ω,−ω2, ω2, 1−ω, ω−1, 1−ω2, ω2−1, ω−ω2, ω2−ω. If we apply the identity 1+ω+ω2 = 0
we can reduce these differences to −1, 1,−ω, ω,−1 − ω, 1 + ω, 1 − ω, ω − 1, 2 + ω,−2 − ω, 2ω +
1,−2ω − 1. We want to show that these differences are always a multiple of some prime π.

To do this, it is sufficient to show that each of these differences is either prime or irreducible.
If an element of D is a unit, then it is irreducible. Proposition 3.1 asserts that the units of D are
1,−1, ω,−ω, ω2,−ω2, so when congruent modulo π these elements will also be equivalent. Part
(3) of Theorem 3.4 asserts that 1 − ω is prime in D, so by the same argument, −1 − ω is also
prime in D. Furthermore, by applying the identity 1+ω+ω2 = 0, notice that −1−ω = ω2 and
1 + ω = −ω2, which are both units. Finally, applying Proposition 3.3, we need only check that
the norm of the 4 differences is prime in Z. We have N(2+ω) = N(−2−ω) = 22 − 2(1)+ 1 = 3,
which is prime in Z. Similarly, N(1 + 2ω) = N(−1 − 2ω) = 12 − 2(1) + 22 = 3, which is also
prime in Z.

Therefore if each element is congruent to every other element modulo π, they must be equal.
■

Proposition 3.9. The following are true.

(1) χπ(α) = 1 if and only if the congruence x3 ≡ α (mod π) is solvable, namely, if α is a
cubic residue modulo π, or π ∤ α.

(2)

α
Nπ−1

3 ≡ χπ(α) (mod π).

(3)
χπ(αβ) = χπ(α)χπ(β).

(4) If α ≡ β (mod π), then
χπ(α) = χπ(β).

Proof. To prove (1), consider Theorem 1.7. Let F = D/πD, so that F∗ = (D/πD)∗. Furthermore,
let q = Nπ and n = 3 as we are dealing with a cubic. Therefore the congruence x3 ≡ α (mod π)
is solvable if and only if α(Nπ−1)/ gcd(3,Nπ−1) ≡ 1 (mod π). This is solvable because Nπ − 1 is
always divisible by the possible values of gcd(3, Nπ− 1) = 1 or 3, and 1 is always a cubic residue
modulo π. Furthermore, there is either one solution or three solutions depending on the value
of gcd(3, Nπ− 1). This is the same idea as what is described in Remark 3 but applied to D/πD
instead.

(2) follows from the definition of the cubic residue character.
For (3) and (4) we use Lemma 3.8. To show (3), we have

χπ(αβ) ≡ (αβ)
Nπ−1

3 ≡ α
Nπ−1

3 β
Nπ−1

3 ≡ χπ(α)χπ(β) (mod π).

By Lemma 3.8, we have χπ(αβ) = χπ(α)χπ(β).
To show (4), notice that if α ≡ β (mod π), then

χπ(α) ≡ α
Nπ−1

3 ≡ β
Nπ−1

3 ≡ χπ(β) (mod π).

By Lemma 3.8, we then have χπ(α) = χπ(β). ■

We will now study cubic characters and their function, as the proof of cubic reciprocity requires
the use of cubic Gauss sums.

Proposition 3.10. The following are true.

(1) χπ(α) = χπ(α)
2 = χπ(α

2).

(2) χπ(α) = χπ(α).
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Proof. By definition, χπ(α) ∈ {0, 1, ω, ω2}. Squaring each one, we have 0, 1, ω2 = ω, and ω4 = ω2,
all of which are equivalent to their conjugate.

To prove the second property, recall by Proposition 3.9 that α(Nπ−1)/3 ≡ χπ(α) (mod π).
Conjugating both sides, we have

α(Nπ−1)/3 ≡ χπ(α) (mod π).

Notice that α(Nπ−1)/3 ≡ χπ(α) (mod π), but Nπ = Nπ = Nπ, so this is just χπ(α) ≡ χπ(α)

(mod π). By Lemma 3.8, we thus have χπ(α) = χπ(α). ■

From this we have the following corollary.

Corollary 3.11. The following are true for a rational integer q.

(1) χq(α) = χq(α
2).

(2) If n is a rational integer coprime to q, then χq(n) = 1.

Proof. Since q is also a rational integer, it is obvious that q = q. Therefore, by Proposition 3.10,
we have χq(α) = χq(α) = χq(α) = χq(α)

2 = χq(α
2).

To prove (2), notice similarly that n = n. Therefore following the same procedure as (1) we

have χq(n) = χq(n) = χq(n) = χq(n)
2. It is impossible for χq(n) to be 0 as n ∤ q, so it must be

that χq(n) = 1. In this way, this corollary asserts that n is a cubic residue modulo q if both are
rational integers. ■

Remark 8. As a special case of the law of cubic reciprocity, consider two primes q1 ̸= q2 such
that q1 ≡ q2 ≡ 2 (mod 3). Then χq1(q2) = χq2(q1). This is a special case of cubic reciprocity
where both the modulus and argument are rational integers.

In order to state the general case, we need to extend this result to all prime elements in D.

Definition 21 (Primary). Let π ∈ D be prime. Then π is primary if π ≡ 2 (mod 3).

We know that π is either rational or not rational. In the rational case, the previous discussion
in Remark 8 applies. If π is not rational, then we consider when π = a+ bω, namely when a ≡ 2
(mod 3) and b ≡ 0 (mod 3). Naturally, there exist 6 possible associates for every element π of
D, as the 6 units of D act as multiplicative identities. However, it is necessary to derive a result
that removes the ambiguity concerning which associate can be used for each element of D.

Lemma 3.12. Let Nπ = p ≡ 1 (mod 3). Exactly one associate of π is primary.

Proof. Express π = a+ bω for a, b ∈ Z. Then the associates of π are given as (1) π, since there
is some unit u such that π = uπ, (2) ωπ, since ω is a unit and π = u(ωπ) for some unit u, (3)
ω2π, since ω2 is also a unit and π = u(ω2π) for some unit u, (4) −π, for the same reason as (1),
(5) −ωπ for the same reason as (2), and (6) −ω2π for the same reason as (3).

With all of these associates for π, we can now express each in terms of a and b. Namely, in
order, we have

(1) a+ bω,
(2) ω(a+ bω) = aω + bω2 = aω + b(−1− ω) = −b+ (a− b)ω,
(3) ω2(a+ bω) = aω2 + bω3 = a(−1− ω) + b = (b− a)− aω,
(4) −a− bω,
(5) −ω(a+ bω) = −(−b+ (a− b)ω) = b+ (b− a)ω,
(6) −ω2(a+ bω) = −((b− a)− aω) = (a− b) + aω.

Among these we must determine the primary associate. Recall that Nπ = p = a2 − ab+ b2. In
this expression, only one of a and b is divisible by 3 since π is primary. Therefore, we proceed
by assuming, WLOG, that a ̸≡ 0 (mod 3). Then we further assume that a ≡ 2 (mod 3). With
these assumptions, we have that p = a2 − ab+ b2 =⇒ p ≡ 1 ≡ 22 − 2b+ b2 (mod 3) =⇒ −3 ≡
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b(b− 2) ≡ 0 (mod 3). We now consider two cases for b. If 3|b, then we have a ≡ 2 (mod 3) and
b ≡ 0 (mod 3), such that π ≡ 2 (mod 3) and so a + bω is primary. If b ≡ 2 (mod 3), then we
must also have a ≡ 2 (mod 3), so π ≡ 2 + 2ω ≡ b+ (b− a)ω (mod 3). Therefore b+ (b− a)ω is
primary.

Now all that remains is to prove uniqueness. Let a + bω be primary. This only occurs when
b ≡ 0 (mod 3), so looking at (2), it is clear that −b + (a − b)ω cannot be primary. The same
is true for (3). For (4), notice that b ≡ 0 (mod 3) implies that π ≡ −a ≡ −2 ≡ 1 (mod 3),
so −a − bω is not primary. For (5), the argument is identical to (2). For (6), the argument is
identical to (3). ■

Now we are equipped to state cubic reciprocity.

Theorem 3.13 (The Law of Cubic Reciprocity). Let π1 and π2 be primary. Furthermore, let
Nπ1, Nπ2 ̸= 3 with Nπ1 ̸= Nπ2. Then

χπ1
(π2) = χπ2

(π1).

In words, if π1 and π2 are primary with different norms not equal to 3, then π1 is a cubic residue
modulo π2 if π2 is a cubic residue modulo π1, and π1 is a cubic nonresidue modulo π2 if π2 is a
cubic nonresidue modulo π1.

This theorem requires that we consider 3 scenarios. The first scenario requires that we consider
whether each π is rational or not. Namely, when both π1 and π2 are rational, when one of π1
and π2 is rational and the other is complex (i.e. in D), and when both π1 and π2 are complex.
In Remark 8, we showed that the first case is trivial. We will also consider special cases of cubic
reciprocity, namely when the input of the cubic character is either a unit, which we consider in
the first supplement, or a special prime, which we consider in the second supplement. The first
supplement is easily provable, but the second is a little more difficult.

3.4. Supplements to Cubic Reciprocity. We first consider cubic reciprocity when the inputs
are the units, namely 1, ω, and ω2 and their negatives. Clearly, (−1)3 = −1, so −1 is always a
cubic residue modulo any π prime, i.e. χπ(−1) = 1. By (2) of Proposition 3.9, we have that

χπ(ω) = ω
Nπ−1

3 . Therefore, the cubic character of units can be stated as follows.

Theorem 3.14 (First supplement to the Law of Cubic Reciprocity). Let ω be a cube root of
unity. Then

χπ(ω) = ω
Nπ−1

3 =

 1 if Nπ ≡ 1 (mod 9),
ω if Nπ ≡ 4 (mod 9),
ω2 if Nπ ≡ 7 (mod 9).

Proof. This is not difficult to show by considering each case. ■

Notice that in the identity 1 + ω + ω2 = 0, we can write ω2 = −1 − ω. Therefore the final
case requires us to consider the cubic residue character χπ(1 − ω), where 1 − ω is also a prime
in D as shown in Theorem 3.4. The proof is divided into two separate cases, specifically when
the modulus is a rational prime π = q and when the modulus is a non-rational prime π. The
first case is easily considered, but the second case requires us to consider more about primary
elements in D.

Theorem 3.15 (Second supplement to the Law of Cubic Reciprocity). Let Nπ ̸= 3. If π = q
is rational, then write q = 3m − 1. If π is primary with π ∈ D then write π = a + bω and take
a = 3m− 1. Then

χπ(1− ω) = ω2m.
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Proof of Theorem 3.15 when π = q is rational. This supplement requires us to consider two dif-
ferent cases. The first case is when π = q is a rational prime, and the second is when π = a+ bω
is non-rational. We consider the case where π = q is a rational prime in this proof.

First notice that (1− ω)2 = 1− 2ω + ω2 = −1− ω + 1− 2ω = −3ω. Therefore by definition
of a character, χq((1 − ω)2) = χq(−3ω) = χq(−3)χq(ω). By Corollary 3.11, since we know
that π = q is a rational prime, and since gcd(−3, q) = 1, we can write χq(−3) = χq(−3) = 1.
Taking π = q to be a rational prime in Theorem 3.14, and since Nπ = Nq = q2, we can write

χq(ω) = ω(Nπ−1)/3 = ω(q2−1)/3. If we square both sides and notice that χq is inherently a cube
root of unity, then by Proposition 3.10 we have

(χq(1− ω)2)2 = χq(1− ω)4 = (χq(1− ω))3χq(1− ω) = χq(1− ω)

= ω2· q
2−1
3 .

We now evaluate the RHS. Let q = 3m − 1 for some m ∈ Z. Then q2 − 1 = (3m − 1)2 − 1 =
9m2 − 6m. Therefore the exponent of the RHS is 2/3(9m2 − 6m) = 6m2 − 4m. Reducing this
modulo 3 because we are dealing with all possible powers of ω - namely, the cube roots of unity
- we have 6m2 − 4m ≡ −4m ≡ 2m (mod 3). Substituting, we have χq(1 − ω) = ω2m, which is
our desired result. ■

The second case, where π is a complex prime, requires that we investigate some facts about
primary elements in D. We begin with the following lemma.

Lemma 3.16. Let α and β be two primary elements in D. Then −αβ is primary.

Proof. Let α = a + bω and β = c + dω. By definition of primary, we have α ≡ 2 (mod 3) and
β ≡ 2 (mod 3). For some s, t ∈ Z, let α = 3s+ 2 and β = 3t+ 2. Taking the product, we have

−αβ = −(3s+ 2)(3t+ 2) = −(9st+ 6s+ 6t+ 4) ≡ −4 (mod 3)

≡ 2 (mod 3).

Therefore −αβ is primary. ■

This can in fact be extended to a product of any number primary elements. This gives us a sort
of primary factorization for primary elements in D, as shown below.

Corollary 3.17. Let γ1, γ2, . . . , γn ∈ D be primary. Then (−1)n−1γ1γ2 · · · γn is also primary.

Proof. We prove this with induction. When n = 2, we have (−1)1γ1γ2, which is primary by
Lemma 3.16. Assume that this holds for some n = k. Then (−1)k−1γ1γ2 · · · γk is primary. We
want to show that (−1)kγ1γ2 · · · γkγk+1 is primary. Notice that

(−1)kγ1γ2 · · · γkγk+1 = (−1)(−1)k−1γ1γ2 · · · γk(γk+1) = −(γk+1)((−1)k−1γ1γ2 · · · γk).
We know that γk+1 is primary, so by Lemma 3.16, the product is also primary. ■

This primary factorization allows us to consider the set of primaries as a UFD. In other words,
if γ ∈ D is some primary element, then we can write γ = (−1)k−1γ2γ2 · · · γk, where, as in Z, the
γis need not be distinct primary prime elements.

Proof of Theorem 3.15 when π is a non-rational prime. We can now prove the second case of
Theorem 3.15. Let π = a + bω be a primary non-rational prime. This is only possible when
a ≡ 2 ≡ −1 (mod 3) and b ≡ 0 (mod 3). For m,n ∈ Z, let a = 3m − 1 and b = 3n. By
definition, a is primary. If a is non-prime, then Corollary 3.17 asserts that for some sequence of
primary primes ai, we can write a = (−1)n−1a1a2 · · · an. WLOG, we assume that a is a primary
rational prime because we can choose any such ai to be our a. By extension, we can say that
a+ b is also a primary rational prime. Furthermore, since a and b are nonzero and we assumed
π to be complex, it is also true that gcd(a, a+ b) = gcd(b, a+ b) = gcd(a, a+ bw).
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Before we proceed, we note the following important identities.

(1)
Na− 1

3
=

(3m− 1)2 − 1

3
≡ 2m (mod 3).

Furthermore, notice that

(2) a+ bω ≡ bω (mod a).

We also note that

a+ bω ≡ 0 (mod π)

a− aω + aω + bω ≡ 0 (mod π)

a− aω ≡ −(a+ b)ω (mod π).(3)

Now, recall that we defined Nπ = p = a2 − ab+ b2, so

p = a2 − ab+ b2

= (3m− 1)2 − (3m− 1)(3n) + (3n)2

p− 1

3
= 3m2 − 2m− 3mn+ 3n2 + n

≡ −2m+ n (mod 3).(4)

Finally, we have the following.

a+ b ≡ 0 (mod a+ b)

a+ bω ≡ bω − b (mod a+ b)

a+ bω ≡ −b(1− ω) (mod a+ b).(5)

Using these results, we can compute the following. We use π = a + bω. Since a is a rational
primary, by Remark 8, we can write

χa+bω(1− ω) = χa(b)χa+bω(1− ω)

= χa(bω
3)χa+bω(1− ω)

= χa(ω
2)χa(bω)χa+bω(1− ω).

By (2), we can expand χa(ω)
2χa(a+ bω)χa+bω(1− ω) = ω

2(Na−1)
3 χa+bω(a)χa+bω(1− ω).

Combining (1) and (3) and then simplifying, we have

ω2mχa+bω(a(1− ω)) = ω2mχa+bω(−(a+ b)ω)

= ω2mχa+bω(−1)χa+bω(ω)χa+bω(a+ b)

= ω2m(1)ω
Nπ−1

3 χa+bω(a+ b).

Applying properties of the cubic character, Theorem 3.13, (4), and (5), we have

ω2m−2m+nχa+b(a+ bω) = ωnχa+b(−b(1− ω)) = ωnχa+b(1− ω).

It is not difficult to verify the following by evaluating each part individually and simplifying.

(6)
2(N(a+ b)− 1)

3
≡ 2(m+ n) (mod 3).
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Leading toward the final result and recalling that (1− ω)2 = −3ω, we have

χa+bω(1− ω) = ωnχa+b(1− ω) = ωnχa+b(1− ω)4 = ωn(χa+b(1− ω)2)2

= ωnχa+b(−3ω)2

= ωn(1)2(1)2χa+b(ω)
2

= ωn(ω
N(a+b)−1

3 )2.

By (6), this is equivalent to writing ωnω2(m+n) = ω2m+3n = ω2mω3n = ω2m, which is what we
wanted to prove. ■

In section 3.6, we will also introduce a special supplement of cubic reciprocity, namely the cubic
character of 2 modulo π. We now proceed to prove cubic reciprocity.

3.5. Proof of Cubic Reciprocity. Before continuing with the proof, we need to make some
preliminary statements regarding D/πD. We let π ∈ D be a prime such that Nπ = p ≡ 1
(mod 3). We showed earlier that D/πD is a finite field with characteristic p, so naturally, it
contains the field Z/pZ as well. Both fields have p elements. Therefore, it is useful to define
an isomorphism between D/πD and Z/pZ. Namely, we have a bijection, where we map residue
classes from Z/pZ to their complex counterparts in D/πD. In this way, we are mapping the
coset of some residue class in Z/pZ to some other coset in D/πD. This isomorphism allows us
to extend the cubic character χπ to not only D/πD, but Z/pZ as well. This means that the
properties of the cubic character in DπD are also valid in Z/pZ, allowing us to consider cubic
Gauss sums ga(χπ) as well as cubic Jacobi sums J(χπ, χπ) on Z/pZ. This realization is ultimately
what allows us to prove cubic reciprocity, and explains why we investigated D/πD so thoroughly.

Moving on, we need to prove some important properties about the Jacobi sum that relate
directly to cubic reciprocity. We first have the following.

Lemma 3.18.

1k + 2k + 3k + · · ·+ (p− 1)k =

p−1∑
l=1

lk ≡
{

0 if p− 1 ̸≡ 0 (mod k)
−1 if p− 1 ≡ 0 (mod k).

Proof. The proof can follow by considering [g] to be a primitive root of (Z/pZ)∗, and noticing
that it is identical to considering the complete set of representatives {[0], [1], [2], . . . , [p − 1]},
we can evaluate the sum over the entire finite field and evaluate each congruence depending on
whether p− 1|k or p− 1 ∤ k. ■

Proposition 3.19. Let π be primary. Then

J(χπ, χπ) = π.

Proof. Let there exist some other primary number π′ such that J(χπ, χπ) = π′. By the definition
of π we must haveNπ = ππ = p = π′π′, since the norm of every primary element π is p. Therefore
either π|π′ or π|π′. However, since all prime elements are primary, each prime is coprime to every
other prime, implying that we must have either π = π′ or π = π′. We need to show that the
second equation is not possible in order to show that π is unique and that there is only one such
primary element.

We begin by writing out the cubic Jacobi sum. Then for some x that runs over Z/pZ, we have

J(χπ, χπ) =
∑
x

χπ(x)χπ(1− x).

By Proposition 3.10, we can rewrite each character so that∑
x

χπ(x)χπ(1− x) ≡
∑
x

x
p−1
3 (1− x)

p−1
3 (mod π).
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Notice that the degree of this polynomial is deg(f(x)) = 2((p − 1)/3) < p − 1. Obviously, this
means that p − 1 ∤ deg(f(x)). Analogously, by Lemma 3.18, and since x runs over all elements
of Z/pZ, we can assert that ∑

x

x
p−1
3 (1− x)

p−1
3 ≡ 0 (mod p).

Equivalence modulo p can be extended to equivalence modulo π. Therefore we can make the
assertion that∑

x

χπ(x)χπ(1− x) ≡
∑
x

x
p−1
3 (1− x)

p−1
3 ≡ J(χπ, χπ) = π′ ≡ 0 (mod π).

By definition of congruence, π|π′, which is impossible unless π = π′ since π and π′ are both
primary. ■

A simple corollary follows by substituting this result into Corollary 2.13 as follows.

Corollary 3.20.

g(χπ)
3 = pπ.

Proof. By Corollary 2.13, we know that g(χ)3 = pJ(χ, χ). Take the character to be the cubic
character. Then by Proposition 3.19, we have g(χπ)

3 = pπ. ■

We need a final fact about the Jacobi sum. The significance of the following result is that it
allows us to make the assertion that the Jacobi sum J(χ, χ) is a primary prime in D. In fact,

since J(χ, χ) is indeed primary, we have J(χ, χ)J(χ, χ) = p, i.e. J(χ, χ) has norm p. First, we
must utilize a fact about algebraic integers. Let Ω denote the set of algebraic integers.

Lemma 3.21. Let ω1, ω2 ∈ Ω and p ∈ Z be prime. Then

(ω1 + ω2)
p ≡ ωp

1 + ωp
2 (mod p).

Proof. The proof follows by expanding the LHS with the Binomial Theorem and noticing that
all intermediate terms reduce to 0 modulo p. ■

In the following, assume that π ∈ D is primary.

Proposition 3.22. If J(χ, χ) = a + bω where ω ∈ Z[ω], then a ≡ −1 (mod 3) and b ≡ 0
(mod 3).

Proof. It is well known that the algebraic integers form a ring. Working with congruences in Ω
and using Lemma 3.21 as well as the fact that χ(t) is a cubic character, we have

g(χ)3 =

( ∑
t∈Fp

χ(t)ζt3

)3

≡
∑
t∈Fp

χ(t)3ζ3t3 (mod 3).

Clearly χ(0) = 0, and since χ(t) is a cubic character, χ(t)3 = 1 for nonzero t. Therefore∑
t∈Fp

χ(t)3ζ3t3 =
∑
t ̸=0

ζ3t3 =
∑
t ̸=0

e2πit = −1.

By Corollary 3.20, we have

g(χ)3 = pJ(χ, χ) ≡ a+ bω ≡ −1 (mod 3).

Alternatively, consider the conjugate χ. By Proposition 3.10, we have that g(χ) = g(χ). Again
applying Corollary 3.20, we have

g(χ)3 = pJ(χ, χ) ≡ a+ bω ≡ −1 (mod 3).
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Equating these equations modulo 3, we have

(a+ bω)− (a+ bω) ≡ −1− (−1) (mod 3)

b(ω − ω) ≡ 0 (mod 3)

b

(
−1 + i

√
3

2
− −1− i

√
3

2

)
≡ 0 (mod 3)

b

(
2i
√
3

2

)
= bi

√
3 ≡ 0 (mod 3)

−3b2 ≡ 0 (mod 9).

This implies that 3|b, i.e. b ≡ 0 (mod 3). Therefore a+ bω ≡ a ≡ −1 ≡ 2 (mod 3). ■

With all of these results, we are now sufficiently equipped to prove cubic reciprocity.

Proof of The Law of Cubic Reciprocity (Theorem 3.13). As indicated before, this is a proof by
cases. In order to prove the full law, we need to consider when one of π1 and π2 is complex and
the other is rational, and when both are complex.

We first prove the case when one is complex and the other is rational. In other words, we need
to show that if π1 = q ≡ 2 and π2 = π a primary with Nπ = p, then χπ(q) = χq(π). Begin by
taking the expression in Corollary 3.20 and raising the LHS and RHS to a power of (q2 − 1)/3.

This results in the equivalence g(χπ)
((q2−1)/3)·3 = g(χπ)

q2−1 = (pπ)(q
2−1)/3. Take this equality

modulo q, so by properties of the cubic character, we have g(χπ)
q2−1 ≡ χq(pπ) (mod q). Notice

that the RHS of the congruence can be expressed as χq(pπ) = χq(p)χq(π). Clearly, since p and
q are coprime, by Corollary 3.11, χq(p) = 1. Therefore we can rewrite the congruence as

g(χπ)
q2−1 ≡ χq(p)χq(π) (mod q)

g(χπ)
q2 ≡ χq(π)g(χπ) (mod q).

Now we can examine the LHS. If we expand the Gauss sum of the LHS, we have

g(χπ)
q2 =

( ∑
t∈Fp

χπ(t)ζ
t

)q2

.

The intermediate terms of this sum will have some form of q as a factor, so if we take this modulo
q, we are left with

g(χπ)
q2 ≡

∑
t∈Fp

χπ(t)
q2ζq

2t (mod q).

Notice that q ≡ 2 (mod 3) =⇒ q2 ≡ 1 (mod 3). Also, since χπ(t) is a cube root of 1, meaning
that is is a cube root of unity, we can express the RHS as a Gauss sum so that we can simplify

to g(χπ)
q2 ≡ gq2(χπ) (mod q). By Lemma 2.6 and since q2 = q−2 and χπ(q

3) = 1, the RHS in
fact becomes gq2(χπ) = χπ(q

−2)g(χπ) = χπ(q
−2)χπ(q

3)g(χπ) = χπ(q)g(χπ). Thus, setting the
two equations equal to each other, we have the expression

χπ(q)g(χπ) ≡ χq(π)g(χπ) (mod π).

Notice that g(χπ)g(χπ) = χπ(−1)p = p by Corollary 2.11, so multiplying both sides by g(χπ) we
have

χπ(q)g(χπ) ≡ χq(π)g(χπ) (mod q)

χπ(q)p ≡ χq(π)p (mod q)

χπ(q) ≡ χq(π) (mod q).

By Lemma 3.8, this means that χπ(q) = χq(π).



42 MATIAS CARL RELYEA

Now we need to show that this is true when both π1 and π2 are non-rational. In this case,
we have that the norm of both must be congruent to 1 modulo 3, i.e. Nπ1 = p1 ≡ 1 (mod 3)
and Nπ2 = p2 ≡ 1 (mod 3). (Note in some way that this is a result of Theorem 3.4) Let some
γ1 = π1 and some γ2 = π2. By Lemma 3.12, we know that exactly one associate of each p1 or p2
is primary, so we call them γ1 and γ2. Then p1 = π1γ1 and p2 = π2γ2. We approach this problem
in a similar way to when one prime is rational and the other is complex. Take the expression
in Corollary 3.20, and write it as g(χγ1

)3 = p1γ1. Raising the LHS and RHS to a power of
(Nπ2 − 1)/3 or (p2 − 1)/3 and taking the expression modulo π2, we obtain

(g(χγ1
)3)

p2−1
3 = g(χγ1

)π2−1 = (p1γ1)
p2−1

3 ≡ χπ2
(p1γ1) (mod π2)

g(χγ1
)p2g(χγ1

)−1 ≡ χπ2
(p1γ1) (mod π2)

g(χγ1
)p2 ≡ g(χγ1

)χπ2
(p1γ1) (mod π2).

We can simplify the LHS. Notice that

g(χγ1
)p2 =

( ∑
t∈Fp

χγ1
(t)ζt

)p2

≡
∑
t∈Fp

χγ1(t)
p2ζp2t (mod π2)

since the intermediate terms are all congruent to 0 modulo π2, and disappear after reduction.
Notice that this is also a Gauss sum, namely gp2

(χγ1
), so g(χγ1

)p2 ≡ gp2
(χγ1

) (mod π2). Notice
that by Lemma 2.6 and Corollary 3.11, and since p2 = p2, the RHS of this congruence can be
equivalently written as gp2

(χγ1
) = χγ1

(p22)g(χγ1
). If we equate this to the expression derived

above, then we have

χγ1(p
2
2)g(χγ1) ≡ g(χγ1)χπ2(p1γ1) (mod π2)

Recall again that g(χ1)g(χγ1
) = p, so multiplying both sides by g(χγ1

), and by Lemma 3.8 , we
have

χγ1(p
2
2)p ≡ pχπ2(p1γ1) (mod π2)

χγ1
(p22) ≡ χπ2

(p1γ1) (mod π2)

χγ1(p
2
2) = χπ2(p1γ1).(1)

We now seek to evaluate the the same thing, but instead using the relation g(χπ2)
3 = p2γ2.

Raising the LHS and RHS to a power of (Nπ1 − 1)/3 or (p1 − 1)/3 and taking the expression
modulo π1, we obtain

(g(χπ2
)3)

p1−1
3 = (p2π2)

p1−1
3

g(χπ2)
p1−1 ≡ χπ1(p2π2) (mod π1)

g(χπ2
)p1 ≡ χπ1

(p2π2)g(χπ2
) (mod π1).

Evaluating the LHS of this congruence, notice that by using the same facts about Gauss sums
as before we have

g(χπ2)
p1 =

( ∑
t∈Fp

χπ2(t)ζ
t

)p1

≡
∑
t∈Fp

χπ2(t)
p1ζp1t (mod π1).

This is also a Gauss sum, so we can write g(χπ2
)p1 = gp1

(χπ2
) = χπ2

(p21)g(χπ2
) since p1 = p1.

Equating this to the equation derived above, we now have

χπ2(p
2
1)g(χπ2) ≡ χπ1(p2π2)g(χπ2) (mod π1)

χπ2
(p21)p ≡ χπ1

(p2π2)p (mod π1)

χπ2
(p21) ≡ χπ1

(p2π2) (mod π1).(2)
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We have evaluated the cases for both π1 and π2, but now we are interested in relating them.
We want to evaluate χγ1

(p22). Notice that by (1) of Corollary 3.11 again, we can rewrite this

as χγ1
(p22) = (χγ1

(p2))
2 = χγ1

(p2). Since γ1 = π1 = π1, and since p2 = p2, we have χγ1
(p2) =

χπ1
(p2), so

(3) χγ1(p
2
2) = χπ1(p2).

Now we are able to finish the proof.
We compute the following. We have

(4) χπ1(π2)χπ2(p1γ1) = χπ1(π2)χγ1(p
2
2),

which follows by substituting (1). Using (3), we have that

χπ1(π2)χγ1(p
2
2) = χπ1(π2χπ1(p2) = χπ1(p2π2).

By (2), we can write this as

χπ2
(p21) = χπ2

(p1π1γ1)

= χπ2(π1)χπ2(p1γ1).(5)

Equating the LHS of (4) to (5) and dividing both sides by χπ2
(p1γ1), we have

χπ1
(π2)χπ2

(p1γ1) = χπ2
(π1)χπ2

(p1γ1)

χπ1(π2) = χπ2(π1),

which is the statement of cubic reciprocity. ■

3.6. The Cubic Character of 2. Now that we have proven cubic reciprocity, we might be
interested in investigating what special values might be cubic residues. The special case that we
will consider in particular is the even prime 2. We will not prove the final result as it uses facts
about Jacobi sums that lie beyond the scope of this paper, but a detailed proof may be found in
Chapter 10 of [Rou12]. To begin, we have the following result about special rational primes.

Proposition 3.23. If q ≡ 2 (mod 3) is a rational prime, then every integer is a cubic residue
modulo q.

Proof. We begin by assuming that q ≡ 2 (mod 3) is a rational prime. Since q is rational, we can
work in the integers modulo q, namely Z/qZ. We define a group homomorphism ϕ : (Z/qZ)∗ →
(Z/qZ)∗ with the mapping ϕ(k) = k3 for some k ∈ (Z/qZ)∗. By Theorem 0.3,

(Z/qZ)∗/Ker(ϕ) ≈ Im(ϕ).

We determine the kernel of ϕ. Clearly, it is only possible for some k ∈ Ker(ϕ) if k3 = 1,
i.e. ϕ maps k to the identity of (Z/qZ)∗, which is 1. However, Theorem 2.3 asserts that the
multiplicative group (Z/qZ)∗ is cyclic with order q − 1. But, 3 ∤ q − 1, so naturally the relation
k3 = 1 is possible if and only if k = 1, as it maps to the identity. Thus Ker(ϕ) is trivial, in that
it only contains one element, so that

|Im(ϕ)| = |(Z/qZ)∗/Ker(ϕ)| = |(Z/qZ)∗|/1 = |(Z/qZ)∗|.
This satisfies the condition for ϕ to be surjective, so due to the mapping ϕ defined earlier, every
element of (Z/qZ)∗ is a perfect cube, i.e. every integer is a cubic residue modulo q. ■

This takes care of one case. This result directly implies that 2 is always a cubic residue modulo
a rational prime q ≡ 2 (mod 3). The following result gives special conditions for the cubic
character of 2 given a prime modulus.

Proposition 3.24. The cubic congruence x3 ≡ 2 (mod π) where π ∈ D is prime is solvable if
and only if π ≡ 1 (mod 2), i.e. if and only if a ≡ 1 (mod 2) and b ≡ 0 (mod 2) in π = a+ bω.
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Proof. If π = q is some primary rational prime, then Proposition 3.23 asserts that every integer is
a perfect cube, so every integer is a cubic residue modulo q a primary rational prime. Therefore
we need to prove that this result is true for a complex primary prime π.

Let π = a + bω be a primary prime. By Theorem 3.13, we have that χπ(2) = χ2(π). We
evaluate the RHS of this equality. We have

π
N(2)−1

3 = π(4−1)/3 = π ≡ χ2(π) (mod 2).

By Proposition 3.9, χ2(π) = 1, i.e. π is a cubic residue modulo 2, if and only if the congruence
x3 ≡ π (mod 2) is solvable. This congruence is solvable, however, if and only if π ≡ 1 (mod 2),
because π would no longer be prime if π ≡ 0 (mod 2). Therefore χ2(π) = 1 if and only if π ≡ 1
(mod 2). Similarly, we have that χπ(2) = 1 if and only if π ≡ 1 (mod 2). In either case, we thus
have that the congruence x3 ≡ 2 (mod π) is solvable if and only if π ≡ 1 (mod 2). ■

With this result, we can prove a condition for the solvability of x3 ≡ 2 (mod p), which allows
us to characterize the cubic character of 2. Proposition 3.24 asserts that the modulus must be a
rational primary prime such that a ≡ 1 (mod 2) and b ≡ 0 (mod 2). We use this fact concerning
the modulus in the proof of the following due to Gauss.

Theorem 3.25. Let p ≡ 1 (mod 3). Then the congruence x3 ≡ 2 (mod p) is solvable if and
only if there exist C,D ∈ Z such that p = C2 + 27D2.

Proof. The proof may be found in Chapter 10 of [Rou12]. ■

4. A Brief Survey of Biquadratic Reciprocity

While Carl Friedrich Gauss had published 8 proofs of quadratic reciprocity by his death, he stated,
without proof, cubic and biquadratic reciprocity. Though Gauss did not provide proofs, he stated
that their proofs likely involved Gauss sums, a new technique for proving higher reciprocity laws.
The proof of cubic reciprocity given in Section 3 is exactly using cubic Gauss sums. In this rather
brief section we aim to introduce the fundamentals of the Gaussian integers Z[i] and outline the
biquadratic reciprocity law.

4.1. The Statement of Biquadratic Reciprocity. As explained in the introduction, there
are many connections between cubic and biquadratic reciprocity in that they both utilize finite
fields. Throughout the rest of this section we let D = Z[i] denote the Gaussian integers. If some
α ∈ D then (α) = αD is the principal ideal generated by α. This is useful in defining the residue
class ring later. It is well known that D is a Euclidean domain, i.e. there exists a Euclidean
algorithm over D. Therefore, an analogue of Euclid’s lemma applies such that if π ∈ D is some
irreducible element and α, β ∈ D, then π|αβ implies that π|α or π|β.

There is also a norm function over D so that Nα = αα. Some α ∈ D is a unit if and only
if Nα = 1. Suppose that α = a + bi is a unit. Then α|1, so for some β ∈ D we have αβ = 1.
Taking norms, we have Nαβ = N(1) = 1. Now suppose that Nα = 1. Then by the definition of
the norm a2 + b2 = 1. This is possible only if either a or b is 0, in which case the units of D are
±1 and ±i.

Let π ∈ D be an irreducible.

Theorem 4.1. The residue class ring D/πD is a finite field with Nπ elements.

Proof. The proof of this fundamental result is very similar to Theorem 3.5. In this proof we use
more facts about irreducibles in D. ■

A natural corollary as an analogue to Fermat’s Little Theorem easily follows.

Corollary 4.2. If π ∤ α then αNπ−1 ≡ 1 (mod π).
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The following is very similar to Proposition 3.7, and the proof is ultimately identical with con-
sideration for Z[i] instead.

Proposition 4.3. If π ∤ α and the ideal (π) ̸= (1 + i) (the significance of this is due to the fact
that 1 + i is irreducible in D), then there exists a unique integer j = 0, 1, 2, 3 such that

α
Nπ−1

4 ≡ ij (mod π).

As such, the biquadratic character is defined as follows.

Definition 22. If π is irreducible and Nπ ̸= 2, for π ∤ α the biquadratic character of α is defined
as χπ(α) = ij where the value of j is determined exactly by Proposition 4.3. If π|α then we
define χπ(α) = 0.

With this definition we can state biquadratic reciprocity.

Theorem 4.4 (The Law of Biquadratic Reciprocity). Let π, λ ∈ D be relatively prime primary
elements. Then

χπ(λ)χλ(π) = (−1)
Nλ−1

4 ·Nπ−1
4 .

While the statement of biquadratic reciprocity is more complex than cubic reciprocity, the mech-
anisms in its proof are fundamentally identical to that of cubic reciprocity. However, to full prove
this result, it is necessary to prove consistently more results regarding Jacobi sums than we have
in this paper. Full coverage of biquadratic reciprocity and its details can be found in chapter 9
of [IR90].

4.2. Higher Reciprocity. As mentioned in the introduction, Eisenstein reciprocity was the first
generalized reciprocity law. However, before obtaining generalized reciprocity, many attempts
were made to generalize reciprocity beyond cubic and biquadratic reciprocity. Gauss (who was
the first to state potential results for higher reciprocity), Jacobi, and Eisenstein made multiple
attempts to no avail. In 1839, Jacobi stated - without proof - special cases of higher reciprocity
for 5th, 8th, and 12th degrees, but he was unable to consider more general laws; see [Jac39]. The
reason for the difficulty in generalizing reciprocity laws beyond 3rd and 4th degrees is that most
sets of complex integers adjoined with increasing roots of unity fail to contain an analogue to the
Euclidean Algorithm and do not form a UFD. The cases we have considered in this paper both
rely on the fact that Z[ω] and Z[i] have the aforementioned properties. The existence of these
properties allows us to consider their residue class rings and proceed from there.
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