Elementary Algebra of Hyperreals

Matias Relyea

January-Term 2025

Matias Relyea

Elementary Algebra of Hyperreals

January-Term 2025

2

Table of Contents

2 The Algebraic Structure of \mathbb{R}^*

3 The Standard Part

イロト イヨト イヨト イヨト

æ

Three Axioms and \mathbb{R}^*

3

3/19

イロト イヨト イヨト イヨト

Axiom A

Axiom

 $\ensuremath{\mathbb{R}}$ is a complete ordered field.

• Complete:

3

イロン イ理 とく ヨン イヨン

Axiom A

Axiom

 ${\mathbb R}$ is a complete ordered field.

- Complete: Basically, there exists a metric over ℝ. e.g. over ℝ we have the Euclidean metric |x y|.
- Ordered:

3

Axiom A

Axiom

 ${\mathbb R}$ is a complete ordered field.

- Complete: Basically, there exists a metric over ℝ. e.g. over ℝ we have the Euclidean metric |x y|.
- Ordered: There exists an ordering of elements of the field. For $a, b, c \in \mathbb{R}$ (where our field in question is $(\mathbb{R}, +, \times)$),

•
$$a \leq b \implies a+c \leq b+c$$
,

•
$$(0 \le a \land 0 \le b) \implies 0 \le a \cdot b.$$

Image: A matrix and A matrix

Axiom B

Axiom

 \mathbb{R}^* , which denotes the set of hyperreal numbers, is an ordered field extension of \mathbb{R} .

• Field extension:

3

5/19

Image: A matched block

Axiom B

Axiom

 $\mathbb{R}^*,$ which denotes the set of hyperreal numbers, is an ordered field extension of $\mathbb{R}.$

• Field extension: Informally, \mathbb{R}^* "extends" \mathbb{R} to a "larger" set. Formally, \mathbb{R} is a *subfield* of \mathbb{R}^* , where \mathbb{R}^* is the *extension field* and retains properties of the field \mathbb{R} .

Axiom C

Axiom

 \mathbb{R}^* has a positive *infinitesimal*, i.e. there exists an element $\varepsilon \in \mathbb{R}^*$ such that $\varepsilon > 0$ and $\varepsilon < r$ for every $r \in \mathbb{R}^+$.

• Recall this from our initial treatment of infinitesimals.

Defining \mathbb{R}^*

Definition

Elements of \mathbb{R}^*

- Some $x \in \mathbb{R}^*$ is
 - positive infinitesimal if |x| < r for all $r \in \mathbb{R}^+$,
 - finite if |x| < r for any $r \in \mathbb{R}$,
 - *infinite* if |x| > r for all $r \in \mathbb{R}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Defining \mathbb{R}^*

Definition

Elements of \mathbb{R}^*

- Some $x \in \mathbb{R}^*$ is
 - positive infinitesimal if |x| < r for all $r \in \mathbb{R}^+$,
 - finite if |x| < r for any $r \in \mathbb{R}$,
 - *infinite* if |x| > r for all $r \in \mathbb{R}$.
- Furthermore, x, y ∈ ℝ* are infinitely close (written x ≈ y) if x y is infinitesimal. This implies that x is infinitesimal iff x ≈ 0.
- The only real infinitesimal is 0.

Monads and galaxies

The following allow us to describe certain sets of hyperreals.

Definition (Monad)

For some $x \in \mathbb{R}^*$, we define the *monad of* x to be

 $monad(x) = \{y \in \mathbb{R}^* | x \approx y\}.$

Monads and galaxies

The following allow us to describe certain sets of hyperreals.

Definition (Monad)

For some $x \in \mathbb{R}^*$, we define the *monad of* x to be

$$monad(x) = \{y \in \mathbb{R}^* | x \approx y\}.$$

The monad can be seen as a "cloud" around a particular x.

イロト イヨト イヨト ・

Monads and galaxies

The following allow us to describe certain sets of hyperreals.

Definition (Monad)

For some $x \in \mathbb{R}^*$, we define the *monad of x* to be

 $monad(x) = \{y \in \mathbb{R}^* | x \approx y\}.$

The monad can be seen as a "cloud" around a particular x.

Definition (Galaxy)

For some $x \in \mathbb{R}^*$, we define the *galaxy of x* to be

$$galaxy(x) = \{y \in \mathbb{R}^* | x - y \text{ is finite}\}.$$

Thus monad(0) is the set of infinitesimals and galaxy(0) is the set of finite hyperreal numbers.

The Algebraic Structure of \mathbb{R}^*

・ロト ・四ト ・ヨト ・ヨト

æ

• Recall: $r + \varepsilon$, $r \in \mathbb{R}$, $\varepsilon \in \text{galaxy}(0)$.

(日)

э

- Recall: $r + \varepsilon$, $r \in \mathbb{R}$, $\varepsilon \in \text{galaxy}(0)$.
- E.g. consider $(r + \varepsilon)(s + \delta) = rs + (r\delta + s\varepsilon + \varepsilon\delta) \in \mathbb{R}^*$.

3

10/19

- Recall: $r + \varepsilon$, $r \in \mathbb{R}$, $\varepsilon \in \text{galaxy}(0)$.
- E.g. consider $(r + \varepsilon)(s + \delta) = rs + (r\delta + s\varepsilon + \varepsilon\delta) \in \mathbb{R}^*$.
- This property can be observed in the following.

3

10/19

- Recall: $r + \varepsilon$, $r \in \mathbb{R}$, $\varepsilon \in \text{galaxy}(0)$.
- E.g. consider $(r + \varepsilon)(s + \delta) = rs + (r\delta + s\varepsilon + \varepsilon\delta) \in \mathbb{R}^*$.
- This property can be observed in the following.

Theorem

The set galaxy(0) of finite hyperreal forms a subring of \mathbb{R}^* under \otimes and \oplus .

- Recall: $r + \varepsilon$, $r \in \mathbb{R}$, $\varepsilon \in \text{galaxy}(0)$.
- E.g. consider $(r + \varepsilon)(s + \delta) = rs + (r\delta + s\varepsilon + \varepsilon\delta) \in \mathbb{R}^*$.
- This property can be observed in the following.

Theorem

The set galaxy(0) of finite hyperreal forms a subring of \mathbb{R}^* under \otimes and \oplus .

• Sums, products, existence of additive inverse, identity. Proof follows using general finite hyperreals. In general, means that finite hyperreals "combined" with other finite hyperreals remain finite hyperreals.

- Recall: $r + \varepsilon$, $r \in \mathbb{R}$, $\varepsilon \in \text{galaxy}(0)$.
- E.g. consider $(r + \varepsilon)(s + \delta) = rs + (r\delta + s\varepsilon + \varepsilon\delta) \in \mathbb{R}^*$.
- This property can be observed in the following.

Theorem

The set galaxy(0) of finite hyperreal forms a subring of \mathbb{R}^* under \otimes and \oplus .

• Sums, products, existence of additive inverse, identity. Proof follows using general finite hyperreals. In general, means that finite hyperreals "combined" with other finite hyperreals remain finite hyperreals.

Corollary

Any two galaxies are either equal or disjoint.

- Recall: $r + \varepsilon$, $r \in \mathbb{R}$, $\varepsilon \in \text{galaxy}(0)$.
- E.g. consider $(r + \varepsilon)(s + \delta) = rs + (r\delta + s\varepsilon + \varepsilon\delta) \in \mathbb{R}^*$.
- This property can be observed in the following.

Theorem

The set galaxy(0) of finite hyperreal forms a subring of \mathbb{R}^* under \otimes and \oplus .

• Sums, products, existence of additive inverse, identity. Proof follows using general finite hyperreals. In general, means that finite hyperreals "combined" with other finite hyperreals remain finite hyperreals.

Corollary

Any two galaxies are either equal or disjoint.

Means that all galaxies are unique or identical. Behaves like residues,
i.e. galaxy(x) is the coset of x modulo galaxy(0), or

$$galaxy(x) = \{x + a | a \in galaxy(0)\}, \quad \text{for all } x \in \mathbb{R}$$

• Sums, differences, and products of infinitesimals; product of infinitesimal with finite hyperreal.

3

11/19

• Sums, differences, and products of infinitesimals; product of infinitesimal with finite hyperreal.

Theorem

The set monad(0) is a subring of \mathbb{R}^* and is an ideal in galaxy(0).

11/19

< □ > < 同 >

• Sums, differences, and products of infinitesimals; product of infinitesimal with finite hyperreal.

Theorem

The set monad(0) is a subring of \mathbb{R}^* and is an ideal in galaxy(0).

 An *ideal* is a subring generated from combinations of elements from the larger and smaller ring. Ideal of galaxy(0): {αβ|α ∈ monad(0), β ∈ galaxy(0)}.

• Sums, differences, and products of infinitesimals; product of infinitesimal with finite hyperreal.

Theorem

The set monad(0) is a subring of \mathbb{R}^* and is an ideal in galaxy(0).

- An *ideal* is a subring generated from combinations of elements from the larger and smaller ring. Ideal of galaxy(0): {αβ|α ∈ monad(0), β ∈ galaxy(0)}.
- The proof follows by setting finite hyperreals and infinitesimals.

• Sums, differences, and products of infinitesimals; product of infinitesimal with finite hyperreal.

Theorem

The set monad(0) is a subring of \mathbb{R}^* and is an ideal in galaxy(0).

- An *ideal* is a subring generated from combinations of elements from the larger and smaller ring. Ideal of galaxy(0): {αβ|α ∈ monad(0), β ∈ galaxy(0)}.
- The proof follows by setting finite hyperreals and infinitesimals.

Corollary

Any two monads are either equal or disjoint.

• Sums, differences, and products of infinitesimals; product of infinitesimal with finite hyperreal.

Theorem

The set monad(0) is a subring of \mathbb{R}^* and is an ideal in galaxy(0).

- An *ideal* is a subring generated from combinations of elements from the larger and smaller ring. Ideal of galaxy(0): {αβ|α ∈ monad(0), β ∈ galaxy(0)}.
- The proof follows by setting finite hyperreals and infinitesimals.

Corollary

Any two monads are either equal or disjoint.

• "infinite closeness" or $x \approx y$ forms an equivalence relation over \mathbb{R}^* .

• Sums, differences, and products of infinitesimals; product of infinitesimal with finite hyperreal.

Theorem

The set monad(0) is a subring of \mathbb{R}^* and is an ideal in galaxy(0).

- An *ideal* is a subring generated from combinations of elements from the larger and smaller ring. Ideal of galaxy(0): {αβ|α ∈ monad(0), β ∈ galaxy(0)}.
- The proof follows by setting finite hyperreals and infinitesimals.

Corollary

Any two monads are either equal or disjoint.

- "infinite closeness" or $x \approx y$ forms an equivalence relation over \mathbb{R}^* .
- The proof follows similarly to galaxy(0). The equivalence relation can be shown by proving reflexivity, symmetry, and transitivity.

Matias Relyea

Elementary Algebra of Hyperreals

January-Term 2025

A powerful result

 monad(0) turns out to be the largest ideal of galaxy(0). This can be seen by the fact that any combination of an infinitesimal with a finite hyperreal is always infinitesimal, and monad(0) is the largest set with this property.

12/19

A powerful result

 monad(0) turns out to be the largest ideal of galaxy(0). This can be seen by the fact that any combination of an infinitesimal with a finite hyperreal is always infinitesimal, and monad(0) is the largest set with this property.

Theorem

The set monad(0) is a maximal ideal in galaxy(0). (Or there does not exist an ideal I in galaxy(0) s.t. monad(0) $\subseteq I \subseteq galaxy(0)$.

A powerful result

 monad(0) turns out to be the largest ideal of galaxy(0). This can be seen by the fact that any combination of an infinitesimal with a finite hyperreal is always infinitesimal, and monad(0) is the largest set with this property.

Theorem

The set monad(0) is a maximal ideal in galaxy(0). (Or there does not exist an ideal I in galaxy(0) s.t. monad(0) $\subseteq I \subseteq galaxy(0)$.

• A direct corollary is that there are negative infinitesimals and negative infinite elements.

12/19

• We can show that there are infinitely many infinitesimals and infinitely many galaxies in ℝ*.

イロト 不得 トイヨト イヨト

э

- We can show that there are infinitely many infinitesimals and infinitely many galaxies in ℝ*.
- Every galaxy can be split up into an infinite number of monads (or clouds).

э

- We can show that there are infinitely many infinitesimals and infinitely many galaxies in ℝ*.
- Every galaxy can be split up into an infinite number of monads (or clouds).
- The proofs are a little more complicated.

Image: A matrix

- We can show that there are infinitely many infinitesimals and infinitely many galaxies in ℝ*.
- Every galaxy can be split up into an infinite number of monads (or clouds).
- The proofs are a little more complicated.
- Remember how the product of an infinitesimal and an infinite need not always be indeterminate? This is why monad(0) is an ideal in galaxy(0) but only a subring of ℝ*.

- We can show that there are infinitely many infinitesimals and infinitely many galaxies in ℝ*.
- Every galaxy can be split up into an infinite number of monads (or clouds).
- The proofs are a little more complicated.
- Remember how the product of an infinitesimal and an infinite need not always be indeterminate? This is why monad(0) is an ideal in galaxy(0) but only a subring of ℝ*.

Example

Consider

$$\varepsilon \cdot \frac{1}{\varepsilon} = 1 \not\in \mathsf{monad}(0).$$

13/19

The Standard Part

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

14 / 19

3

• The following shows where the standard part comes from.

イロト 不得 トイヨト イヨト

э

• The following shows where the standard part comes from.

Theorem

Every finite $x \in \mathbb{R}^*$ is infinitely close to a unique real number $r \in \mathbb{R}$. In other words, every finite monad monad(x) contains a unique real.

• The following shows where the standard part comes from.

Theorem

Every finite $x \in \mathbb{R}^*$ is infinitely close to a unique real number $r \in \mathbb{R}$. In other words, every finite monad monad(x) contains a unique real.

• This is the standard part of x. Existence is kinda hard to show.

• The following shows where the standard part comes from.

Theorem

Every finite $x \in \mathbb{R}^*$ is infinitely close to a unique real number $r \in \mathbb{R}$. In other words, every finite monad monad(x) contains a unique real.

• This is the standard part of x. Existence is kinda hard to show.

Corollary

Suppose x, y are finite hyperreals. Then

$$x \approx y \iff st(x) = st(y),$$

2
$$x \approx st(x)$$
,

$$\bullet$$
 if $r \in \mathbb{R}$ then $st(r) = r$,

• if $x \leq y$ then $st(x) \leq st(y)$.

• The following shows where the standard part comes from.

Theorem

Every finite $x \in \mathbb{R}^*$ is infinitely close to a unique real number $r \in \mathbb{R}$. In other words, every finite monad monad(x) contains a unique real.

• This is the standard part of x. Existence is kinda hard to show.

Corollary

Suppose x, y are finite hyperreals. Then

$$x \approx y \iff st(x) = st(y),$$

- 2 $x \approx st(x)$,
- \bullet if $r \in \mathbb{R}$ then st(r) = r,
- if $x \leq y$ then $st(x) \leq st(y)$.
 - Do the proofs yourselves.

Another theorem

Theorem

The standard part function is a ring homomorphism of the ring galaxy(0) onto the field of real numbers. For finite x, y,

$$1 st(x \oplus y) = st(x) \oplus st(y),$$

 $t(x \otimes y) = st(x) \otimes st(y).$

Another theorem

Theorem

The standard part function is a ring homomorphism of the ring galaxy(0) onto the field of real numbers. For finite x, y,

$$I st(x \oplus y) = st(x) \oplus st(y),$$

$$st(x \otimes y) = st(x) \otimes st(y).$$

 Sounds more complicated than it is. A ring homomorphism is a structure-preserving map that takes elements of galaxy(0) to elements of ℝ using the properties of the ring, which in this case are ⊗ and ⊕.

Another theorem

Theorem

The standard part function is a ring homomorphism of the ring galaxy(0) onto the field of real numbers. For finite x, y,

$$1 st(x \oplus y) = st(x) \oplus st(y),$$

$$st(x \otimes y) = st(x) \otimes st(y).$$

- Sounds more complicated than it is. A ring homomorphism is a structure-preserving map that takes elements of galaxy(0) to elements of ℝ using the properties of the ring, which in this case are ⊗ and ⊕.
- The proof is also pretty straightforward.

More interesting stuff that Keisler covers

- Model theory is incredibly important to studying hyperreal numbers.
- Keisler covers a lot more rigorously in [1].

17/19

Image: A matrix and A matrix

H. Jerome Keisler.

Foundations of Infinitesimal Calculus.

University of Wisconsin, 2000.

Available online at

https://www.math.wisc.edu/~keisler/foundations.html.

• • = •

3

The Standard Part

Thanks

Figure: The duck thanks you.

				_			
- 10 /		۰.	20	_	0	•	0-
12	l d	u	as	- 1 \	e.	LΝ	ee

Elementary Algebra of Hyperreals

January-Term 2025

3