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Abstract. This paper was inspired by AMS Mathematics Magazine problem #2175 in [1] which asks

“For which integers n ≥ 3 can an n × n square grid be colored black and white—using each color
at least once—so that every possible placement of a W -pentomino covers an even number of black

squares?” We extend this problem to consider other and more general polyominos in square grids, as
well as grids composed of triangles, and present their respective results. We also prove a solution to

the original problem that is 2 ≤ n ≤ 5.

Introduction and Nomenclature

The study of polyominos became popular with the emergence of the game Tetris, where players
attempt to interlock Tetris tiles—what we refer to as “polyominos”—and avoid gaps to score points.
Figure 1 shows an example of three simple polyominos.

(a) V -triomino (b) S-tetromino (c) W -pentomino

Figure 1. The V -triomino, S-tetromino, and W -pentomino

This paper focuses on generalizations and extensions of the problem proposed in the abstract. A
general polyomino with any number of cells can be defined as follows.

Definition 1. (Polyomino) A polyomino X is a contiguous arrangement of cells. See Figure 1 for
examples of simple polyominos.

We will also define some other terms relevant to the problem.

Definition 2. (p-grid) A p-grid δ is a subset of the two-dimensional plane tiled by congruent p polygons.
Each smallest p polygon is referred to as a cell.

A coordinate system will enable us to identify individual cells. For a rectangular grid, we use
standard Cartesian coordinates, where (1, 1) represents the bottom left square. In other grids, such as
the triangular grid Tn, we may define alternative coordinate systems.

Definition 3. (Coloring) For a grid δ, let a coloring C be an assignment of a color c : δ → {0, 1} to
each cell, where 1 is black and 0 is white.

Definition 4. (X-sufficient coloring) A coloring is X-sufficient if it utilizes both black and white, and
all possible placements and orientations of an X-polyomino will cover an even number of black squares
(which includes 0). It is X-insufficient otherwise.

Definition 5. (X-sufficient grid) A grid is X-sufficient if it has an X-sufficient coloring. It is X-
insufficient otherwise.
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Conventional polyominos on n× n square grids

The following results concern two containment arguments for provingX-sufficiency orX-insufficiency
on larger square grids given a respective smaller square grid. These lemma will be useful later throughout
this paper.

Lemma 1. If for some polyomino X and sets A ⊂ B of cells, B is X-sufficient, then A is X-sufficient.

Proof. Consider the coloring of the cells of A when B is colored such that the conditions of X-sufficiency
in Definition 4 hold for B. Then, as A ⊂ B, any placement of an X-polyomino on A will cover an even
number of black squares. Thus, A is X-sufficient. ■

The contrapositive yields the following.

Corollary 2. If for some polyomino X and sets A ⊂ B of cells, A is X-insufficient, then B is X-
insufficient.

One particularly useful implication of these lemmas is that if a k × k grid is insufficient, then all
n× n grids are insufficient for n ≥ k. Note that Lemma 1 and Corollary 2 apply to general p-grids (as
opposed to only square ones) as well.

The V -triomono. As the simplest case of our problem, the V -triomino presents an elementary appli-
cation of Corollary 2.

Proposition 3. The coloring of Sn for n ≥ 2 is V -insufficient.

Proof. When n = 2, there are only 6 possible colorings of S2 up to rotational symmetry, as seen in
Figure 2. By inspection, we can deduce that S2 is V -insufficient.

Figure 2. Six possible colorings of S2 up to rotational symmetry.

Notice that the first and last colorings are V -insufficient because they do not utilize both colors. For
n > 2, we note that S2 ⊂ Sn. Thus, by Corollary 2, we have that Sn is V -insufficient for n ≥ 2.

■

The 2×2 Square S2-tetromino. The next consideration of polyominos is naturally square tetrominos,
or what we refer to as the S2-tetromino. We present a proof that the n× n square grid is S2-sufficient.

Proposition 4. For all n ≥ 2, the n× n square grid is S2-sufficient.

Proof. We will provide two S2-sufficient colorings for an n× n grid, where n > 1.
As an S2-tetromino necessarily contains two vertically adjacent cells and thus two consecutive y-

coordinates, it must contain two cells with even y-coordinates and two with odd y-coordinates. There-
fore, it suffices to color all cells with even y-coordinates black, so that every possible S2-tetromino covers
exactly 2 black cells.

An alternative method is to color only cells with x- and y-coordinates of the same parity. Each
placement of an S2-tetromino necessarily contains exactly two of these cells, and so the same result is
achieved.

Therefore, for all n ≥ 2, the n× n grid is S2-sufficient. ■

We show an example.
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Example. Below are three cases of colorings that are S2-sufficient.

(a) even y (b) (x, y) same parity (c) another sufficient coloring

Figure 3. Examples of S2-sufficient colorings for the cases n = 4.

Given that multiple possible colorings may exist, we will prove a method for producing additional
X-sufficient colorings given two differing ones.

Proposition 5. If C1 and C2 are X-sufficient colorings, then the coloring C : c(x, y) = c1(x, y)⊕c2(x, y)
is X-sufficient (where ⊕ denotes the XOR operator).

Proof. Assume coloring C1 is X-sufficient. For a given cell (x, y) with color c1(x, y), we notice that its
color in C remains the same if c2(x, y) = 0 and changes if c2(x, y) = 1. Any placement of the polyomino
X will contain an even number of squares such that c2(x, y) = 1, since C2 is also X-sufficient. As X
originally covered an even number of squares and has an even number of squares that change color, it
still covers an even number of black squares. ■

The W -pentomino. We now consider the existence of sufficient colorings for the W -pentomino (Fig-
ure 1). By inspection, 3× 3, 4× 4, and 5× 5 grids are W -sufficient. W -sufficient colorings for each grid
are shown in Figure 4.

(a) n = 3 (b) n = 4 (c) n = 5

Figure 4. Examples of W -sufficient colorings for the cases n = 3, 4, 5.

The following lemma proves that the coloration of certain cells propagates throughout an n × n
square grid.

Lemma 6. If a coloring C is W -sufficient and {|x1−x2|, |y1−y2|} = {2, 3}, then c(x1, y1) = c(x2, y2).

Proof. Suppose a coloring C is W -sufficient. We will show that c(x, y) = c(x + 3, y + 2) since other
equalities can be shown analogously. The sums

c(x, y) + c(x+ 1, y) + c(x+ 1, y + 1) + c(x+ 2, y + 1) + c(x+ 2, y + 2)

≡c(x+ 1, y) + c(x+ 1, y + 1) + c(x+ 2, y + 1) + c(x+ 2, y + 2) + c(x+ 3, y + 2) (mod 2)
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since they count the number of black cells in two overlapping pentominos (see Figure 5). Therefore,
their difference c(x+ 3, y + 2)− c(x, y) ≡ 0 (mod 2). Since c(x, y) can only take a value of 0 or 1, the
absolute value of the difference |c(x + 3, y + 2) − c(x, y)| is both even and less than 2, so it must be
equal to 0, or

c(x+ 3, y + 2)− c(x, y) = 0 =⇒ c(x, y) = c(x+ 3, y + 2).

■

(x,y)

(x + 3,y + 2)

Figure 5. Two overlapping W -pentominos shown in blue and red demonstrate why
c(x, y) = c(x+ 3, y + 2).

After showing this, we can provide a solution to the initially proposed problem from the Mathematics
Magazine [1] previously outlined in the abstract.

Proposition 7. An n× n grid is W -insufficient for n ≥ 6.

Proof. By Corollary 2, we must only show that a 6× 6 grid is W -insufficient.
Suppose a W -sufficient coloring C exists. Applying Lemma 6, we see that c(1, 1) = c(4, 3). By

repeatedly applying Lemma 6 using the code provided in the Appendix, we can see that c(1, 1) = c(x, y)
for all cells (x, y) in the grid. This repeated procedure is depicted in Figure 6. Thus, in order for C to
be a W -sufficient coloring, all cells must have the same color. However, this fails the requirement for
both colors must be present. ■

10 3 6 5 8 3
3 8 7 4 5 8
6 7 2 9 4 5
5 4 9 2 7 6
8 5 4 7 9 3
1 8 5 6 3 10

Figure 6. The steps of the algorithm at which we know that the cell must be the
same color as (1, 1), as progressively inferred by Lemma 6.

Remark 1. The overlaying property proven in Lemma 6 can be extended to consider a number of other
polyominos, where initial colorings propagate throughout a square grid.

The (k×1) polyomino and non-overlapping constructions. We present a generalization for (k×1)
polyominos.

Theorem 8. All n× n grids with n > 1 are sufficient for the (k × 1) polyomino1 where k > 2.

1And thus, by rotational symmetry, for (1× k).
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Proof. For n < k, the statement is vacuously true. We will construct a sufficient coloring for a k × 1
polyomino. Color all cells (x, y) such that x + y ≡ 0 (mod k) or x + y ≡ 1 (mod k) black, and leave
the others white. We will consider two cases.

• The (k × 1) polyomino is placed vertically: Let the coordinate of the bottom cell of the
polyomino be (x0, y0), and note that n − y0 ≥ 0 as we assume the polyomino fits in the grid.
Then, the polyomino covers all cells between (x0, y0) and (x0, y0+ k− 1) inclusive, or the set of
cells {(x0, y0+a) : a ∈ [0, k−1], a ∈ Z} (From the fact that n−y0 ≥ 0, we know that these cells
are contained in the grid). Recall that we have colored the cells such that x + y ≡ 0 (mod k)
and x + y ≡ 1 (mod k) black. As x0, y0 are constant and a takes all integer values from 0 to
k − 1 inclusive, we can see that there must be exactly two covered cells colored black.

• The (k × 1) polyomino is placed horizontally: Since the grid coloring is symmetric by
reflection across the (i, i) diagonal, this case follows from the first.

As there are only two distinct rotations of the (k × 1) polyomino, we are done. ■

Example. Below are two example placements of a (3 × 1)-triomino on S4 with the (3 × 1)-sufficient
coloring described above.

(a) Non-rotated (3× 1)-triomino in S4 (b) Rotated (3× 1)-triomino in S4

Figure 7

Constructing polyominos from non-overlapping (k × 1) polyominos yields a powerful result.

Corollary 9. Let X be a polyomino constructible by joining contiguous, non-overlapping (1 × k) and
(k × 1) polyominos with k > 2. Then, the n× n square grid Sn is X-sufficient for all n > 1.

Proof. Let X = x1∪x2∪ . . .∪xl be a composite polyomino, where each xi is a 1×k or k×1 polyomino
defined by a set of ordered pairs for some k > 2, and xi∩xj = ∅ when i ̸= j. Color the grid according to
the rule defined in Theorem 8 so that, by the theorem, each xi covers an even number of black squares.
Since xi ∩ xj = ∅ for i ̸= j, the total number of black squares covered by X is the sum of those covered
by each xi, which is necessarily even. This yields the result2. ■

This result is particularly powerful when considering how many different types of polyominos can
now be shown to be X-sufficient.

Example. Below is an example of a composite hexomino consisting of two (3× 1)-triominos.

2Note: If X does not fit on the square grid, the corollary is vacuously true; in general we exclude n = 1 as it cannot
fulfill the condition of both colors being present for X-sufficiency.
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Figure 8. A hexomino composed of a (3× 1)- and (1× 3)-triomino on S4. Thus S4 is
X-sufficient.

Additionally, Corollary 9 allows us to extend our consideration to a rectangular polyomino of arbitrary
dimensions.

Proposition 10. For any a×b rectangular polyomino R with max(a, b) > 2, the n×n grid is R-sufficient
for all n > 1.

Proof. Without loss of generality, suppose that a ≥ b. Then R can be formed by joining b copies of
(1× a) polyominos, and so by Corollary 9, the n× n grid is R-sufficient. ■

The O-octomino. We briefly consider the O-octomino, shown in Figure 9.

Figure 9. The O-octomino

Proposition 11. All n× n grids are O-sufficient.

Proof. For n < 3, the O-octomino does not fit, so the statement is vacuously true.
Label the n × n grid with n ≥ 3 as usual and color squares with x- and y- coordinates of the same

parity black, and leaving the others white. Now consider the octomino composed of a 3× 3 square with
the center removed. We will proceed with two cases.

Case 1: The O-octomino is centered at coordinates of differing parity. Without loss
of generality, suppose that it is centered on a cell with an even x and odd y (the reverse is the
same). Consider the diagram below:

OE EE OE

OO EO OO

OE EE OE

Figure 10. The O-octomino centered at coordinates of differing parity.

As we can see in Figure 10, exactly four black squares are covered in this case.
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Case 2: The O-octomino is centered at coordinates of the same parity. Without loss
of generality, suppose the polyomino is centered on a cell with both coordinates even. Consider
the diagram below.

OO EO OO

OE EE OE

EO OO EO

Figure 11. The O-octomino centered at coordinates of the same parity. Note that
the O-octomino does not contain the central cell.

We can again see in Figure 11 that exactly four black squares are covered.

Therefore, we see that the O-octomino always contains exactly four black cells with the given coloring,
and so the proposition is true. ■

Odd X-sufficiency on triangular grids

We consider an extension of the initial problem to polyominos covering an odd number of colored
cells instead of an even number. In this section, we will consider odd X-sufficiency on triangular grids
in particular. We define the following.

Definition 6. (Odd X-sufficient) A grid is odd X-sufficient if there exists a coloring such that any
placement and orientation of an X-polyomino covers an odd number of black cells.

We can immediately make determinations about odd-sufficiency for any polyomino X composed of
an odd number of cells given even-sufficiency.

Proposition 12. For some polyomino X that covers an odd number of cells, a grid that is X-sufficient
is also odd X-sufficient.

Proof. Since the grid is X-sufficient, we know that for some coloring, any placement and orientation of
the X-polyomino covers an even number of black cells. However, since the polyomino covers an odd
number of cells in total, it must cover an odd number of white squares. So, we can simply flip the colors
of our X-sufficient coloring. Since the polyomino must now cover an even number of white squares, it
must cover an odd number of black squares. ■

Triangular grids. We begin by defining a triangular grid.

Definition 7. (Triangular grid) We define Tn to be the equilateral triangular grid with a side length
of n units.

Example. Figure 12 shows an example of the triangular grid Tn for n = 5.

Figure 12. T5.
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The G-hexomino. We present a result concerning odd X-sufficiency on the triangular grid when X
is the “Georgie” or G-hexomino, shown below in its six orientations.

(a) G1 (b) G2 (c) G3

(d) G4 (e) G5 (f) G6

Figure 13. All six orientations of the G-hexomino placeable in a triangular grid Tn

for n ≥ 4.

Theorem 13. Tn is odd G-sufficient for all n ≥ 4.

Proof. We first show that there exists a coloring such that any placement of G1 not rotated covers an
odd number of black cells. Consider n = 4. We use the following four colorings of T4, which we refer
to as “tiles,” shown in Figure 14. Notice that there is only one valid placement of a non-rotated G1 in
each tile, and the polyomino covers an odd number of black cells in all cases.

(a) Tile A (b) Tile B1 (c) Tile B2 (d) Tile B3

Figure 14. Valid odd colorings of T4 for G1. Tile A is unique, and tiles B1, B2, and
B3 are rotations of each other.

These will be the building blocks to construct Tn. We can produce a coloring of the remaining Tn

grids by interlacing copies of A and each Bi perfectly. By construction, any T4 subgrid of the new
triangular grid is either tile A or one of B1, B2, B3. Then, since each tile and therefore T4 subgrid
satisfies the property that any placement of G1 without rotation covers an odd number of black cells
(and G1 can be fully contained in any T4 subgrid), the entire grid would as well. This is shown in
Figure 15.
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Figure 15. A T5 grid can be formed by composing tiles A, B1, and B2, where A is
shaded red, B1 is shaded blue, and B2 is shaded green.

Figure 16 shows a constructive example of T8 from tiles A,B1, B2, and B3.

Figure 16. Valid odd coloring of T8 for G1. Notice that this triangular grid contains
all tiles in Figure 14.

Therefore, for every n ≥ 4, a coloring can be constructed by arranging or composing A and Bi

tiles such that all placements of G1 without rotation cover an odd number of black cells. Since each
construction preserves this property, it holds true on Tn for any n ≥ 4. Through this tiling method, we
can construct a G1-sufficient coloring of any given triangular grid. Since our plane coloring is identical
under the same rotations by which G2, G3 . . . , G6 derive from G1, we can determine that the property
holds true for all orientations of G1, and thus the coloring is odd G-sufficient. ■

Future Work

It may be interesting to explore additional grids of various structures as done with the triangular
grid. We present a theorem and potential applications that would likely be useful in doing so.

Theorem 14. Let T∆ be a polyomino in a grid δ and ϕ be a bijective mapping from δ to a grid χ.
Then, δ is T∆-sufficient iff there exists a coloring C of χ such that ϕ(T∆) covers an even number of
black cells in χ for all orientations and placements of T∆ in δ.

Proof. First, we will show that if δ is T∆-sufficient, then there is a coloring C of χ such that ϕ(T∆)
covers an even number of black cells in χ for all orientations and placements of T∆ in δ. Assume δ is
T∆-sufficient, so there exists a coloring C of δ such that any placement and orientation of T∆ in δ covers
an even number of black cells. Color χ by the rule that ϕ(x, y) ∈ χ is black iff (x, y) ∈ δ is black.

Now, suppose that for some placement of T∆ in δ, it is true that ϕ(T∆) does not cover an even
amount of black cells in χ colored with the above rule. Apply ϕ−1 to ϕ(T∆) (We know this mapping
exists as ϕ is bijective), yielding T∆. Because of the rule by which we colored χ, it must be true that
T∆ now does not cover an even number of black cells in δ with the coloring C. However, this violates
our assumption about the nature of the coloring C, and so we have reached a contradiction.
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For the other direction, suppose that there exists a coloring C of χ such that ϕ(T∆) covers an even
number of black cells in χ for all orientations and placements of T∆ in δ, but that δ is T∆-insufficient.
Color δ such that a cell (x, y) ∈ δ is black iff ϕ(x, y) ∈ χ is black in C. Now, suppose that for some
placement of T∆ in δ, it is true that T∆ does not cover an even amount of black cells in δ colored under
this rule. Apply ϕ to T∆. Because of the rule by which we colored δ and that ϕ is injective (as it is
bijective), it must be true that ϕ(T∆) now does not cover an even number of black cells in χ with the
coloring C. However, this violates our assumption about the nature of the coloring C. So, we have again
reached a contradiction. ■

Consider the grid T5 as previously defined. We can map T5 to a grid of squares using a bijection ϕ
which, in combination with Theorem 14, will allow us to use our previous results for grids composed of
squares. To illustrate this mapping, define the leftmost and bottom-most upward-pointing triangle in
the triangle grid (resembling ∆) as (1, 1). Define the triangles to the right by adding to the x coordinate
and those above by adding to the y.

Figure 17. T5 with (1, 1) shown in red.

Let us define ϕ as mapping (x, y) ∈ δ → (x, y) ∈ χ, where χ is a grid tiled by squares. We observe
that isomorphic polyominos in δ are not always isomorphic after the mapping ϕ is applied, as shown in
Figure 18.

Figure 18. Mapping of T5 containing two polyomoinos to a square grid under ϕ.

The triangular grid in Figure 18 contains two trapezoid triominos, or trapominos, composed of three
triangular cells. Two rotations of this polyomino are shown below.

(a) Trapezoid triomino (b) Alternate orientation

Figure 19. Two orientations of the trapezoid triomino.

By inspection, we can determine that there is no n > 2 such that the grid Tn is trapomino-sufficient.
We posit that this is because mapping a rotation of the trapomino in the triangle grid to the square
grid gives the V -triomino (see Figure 18), for which we have established the common impossibility of
creating a sufficient coloring.
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From this we can gain another insight: rotating polyominos in grids with non-similar cells will change
the adjacency of the cells that compose the polyomino after the mapping. It may also be interesting
to examine X-semisufficient colorings, or colorings such that any placement without rotation of X on
a grid covers an even number of black squares, as our results would be easier to use.

For another potential application of Theorem 14, consider a grid δ that maps to S5 under the bijection
ϕ : δ → S5, and suppose some polyomino X in δ maps to either of (but only to) the two polyominos
shown below.

Figure 20. Two polyominos placeable in S5.

Since we know that there exists a single coloring of S5 that is sufficient for both of these polyominos
(the checkerboard coloring), there must be an X-sufficient coloring of δ given by cδ(x, y) = cS5

(ϕ(x, y)).

Acknowledgements

The authors would like to thank Dr. Ashley Tharp at the North Carolina School of Science and
Mathematics for mentoring this project and for sponsoring submission to the Broad Street Scientific.
Additionally, they extend their gratitude to the RMath J-Term team for providing this opportunity.

References

[1] Problems and Solutions. Problems and solutions. Mathematics Magazine, 96(3):359–369, 2023.



12 PEYTON JACKSON, TATIANA MEDVED, MATIAS RELYEA

Appendix

Automated propagation of color equality (Python).

def check (x , y , n ) :

return (0 <= x < n) and (0 <= y < n)

n = 6

a = [ [ 0 ] ∗ n for i in range (n ) ]

a [ 0 ] [ 0 ] = 1

for t in range ( 1 0 ) :

for i in range (n ) :

for j in range (n ) :

for (dx , dy ) in [(−2 , −3) , (−2 , +3) , (2 , −3) , (2 , +3) ,

(+3 , −2) , (+3 , +2) , (−3 , −2) , (−3 , +2) ] :

i f ( check ( i + dx , j + dy , n ) ) and a [ i ] [ j ] :

a [ i + dx ] [ j + dy ] = 1

for i in range (n ) :

print ( a [ i ] )
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