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The Omnific Integers

Definition

We define an omnific integer x ∈ OZ to be such that

x = (x − 1|x + 1).

1 ZNo (1,-1,2,31415926535897932384626),

2 ω, ω + 1,
√
ω, ω2, etc.

It can be shown that all ordinals are omnific integers. As a
corollary to this fact, every number x can be represented as a
quotient of two omnific integers.
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The Omnific Integers (continued)

We can show that the omnific integers are closed under
addition (naturally, subtraction) and multiplication. It is
sufficient to show that if x , y ∈ OZ, then x ± y ∈ OZ and
xy ∈ OZ.
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Exponentiation in ZNo

Theorem

Let some α ∈ Z+
No, where α = (x |ϕ) and x ∈ Z+ (i.e. a

positive integer surreal). Then

αn =

(
nαn−1x −

n−1∑
r=2

(
n

r

)
αn−rx r − xn

∣∣∣∣ϕ)
when n > 2.
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Exponentiation in ZNo (continued)

Theorem

Analogously, let α ∈ Z−
No, where α = (ϕ| − x) where x ∈ Z+.

Then

αn =


(
nαn−1x −

∑n−1
r=2

(n
r

)
αn−rx r − xn

∣∣∣∣ϕ) n ≡ 0 (mod 2),(
ϕ

∣∣∣∣xn +∑n−1
r=2

(n
r

)
αn−rx r − nαn−1x

)
n ≡ 1 (mod 2),

where n > 2.
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Prime Factorisation in ZNo

We can write in general the prime factorisation of an integer
surreal. If some p is prime in Z, then its prime representation
in Z+

No is (p − 1|ϕ). Let p1, p2, . . . , p2 represent positive integer
surreals. Let π1, π2, . . . , πn represent the powers of each prime.
Then for some integer surreal x ∈ ZNo, we can write

x = pπ1
1 pπ2

2 · · · pπn−1

n−1 p
πn
n

=

(
π1p

π1−1
1 x −

π1−1∑
r=2

(
π1
r

)
pπ1−r
1 x r − xπ1

∣∣∣∣ϕ)·(
π2p

π2−1
2 x −

π2−1∑
r=2

(
π2
r

)
pn−r
2 x r − xπ2

∣∣∣∣ϕ) · · ·

(
πnp

πn−1
n x −

πn−1∑
r=2

(
πn
r

)
pπn−r
n x r − xπn

∣∣∣∣ϕ).
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Classification of Elements of OZ

1 Conway also establishes a division algorithm.

Theorem

If a and b are integers with b > 0, then there exist unique
omnific integers q and r such that a = bq + r , where
0 ≤ r < b.

2 A descending chain condition occurs in an algebraic
structure when there is no infinite decreasing ordering. OZ
does not satisfy this property. Therefore a division
algorithm does not establish unique factorisation in OZ.

3 This is illustrated by the following non-unique factorisation
of ω.

Example

ω = 2(ω/2) = 3(ω/3) = · · · = (
√
ω)2 = ( 3

√
ω)3 = · · · .
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Classification of Elements of OZ (continued)

We need the following definition.

Definition (Divisible)

An omnific integer is divisible iff it is divisible by every finite
non-zero omnific integer.

Theorem

Every omnific integer is uniquely the sum of a divisible omnific
integer and a finite omnific integer.

If we restrict the integers mentioned here to ordinal numbers,
then this creates a division algorithm analogous to the previous
theorem with numbers of the form a = ωq + r . Otherwise the
two theorems are separate.
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Classification of Elements of OZ (continued)

1 For numbers that are indivisible, meaning they are not
divisible by every finite non-zero integer, there also exists a
series of non-unique factorisations.

2 There is also a notion of primality.

Example

ω +
√
ω + 3

√
ω + · · ·+ 1

is prime.
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Survey of number-theoretic things in OZ

1 Pell equations and continued fractions.
A Pell equation is of the form x2 − Ny2 = ±1, where N is
some fixed omnific integer. We can consider this in the
context of omnific integers by letting x and y be omnific
integers. The theory can be studied by considering
convergents of the infinite continued fraction expansion of√
N.

2 There are many analogues and trivial/nontrivial things to
investigate in the omnific integers. Ex. modular arithmetic
(modulo an omnific integer?), sum of two squares, literally
every number-theoretic problem in existence.
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Thank you!


